
CONVOLUTIONS AND MOLLIFICATIONS

Henceforth, we use m to denote the Lebesgue measure on R and Lp to denote the Banach
space Lp(R,m) for any p ∈ [1,∞]. One of the goals of this note is to prove that smooth functions
with compact support are dense in Lp for any p ∈ [1,∞). In order to do so, we will introduce the
notion of convolution, which is an important tool in analysis.

Convolutions and Young’s Inequality. Let us start with a simple technical lemma.

Lemma 1. Let f ,g : R→ R be measurable. Then, the functions

x 7→
∫ (

f (x− y) ·g(y)
)+ dy, and x 7→

∫ (
f (x− y) ·g(y)

)− dy

are well-defined and measurable.

Proof. The functions (x,y) 7→ x− y and (x,y) 7→ y are continuous from R2 to R, hence their
compositions (x,y) 7→ f (x− y) and (x,y) 7→ g(y) with f and g respectively are measurable.
Thus, (x,y) 7→ f (x− y)g(y), as well as its positive and negative parts, are measurable too. An
application of the Tonelli Theorem implies the claim. �

In light of the previous lemma, given two measurable functions f and g, we define their
convolution to be

( f ∗g)(x) =
∫

f (x− y) ·g(y)dy,

whenever the integral exists.

Exercise 2. Using the definition, verify that ( f ∗g)(x) = (g∗ f )(x).

For example, if g(x) = 1
2r χ[−r,r](y) for some r > 0, then the convolution f ∗g is the average

( f ∗g)(x) =
1
2r

∫
f (y) ·χ[−r,r](y)dy =

1
2r

∫ x+r

x−r
f (y)dy.

More in general, if g is a non-negative integrable function, we think of the convolution ( f ∗g)(x)
as the “average” of f with respect to the measure dµ = g(−y)dy translated by x.

The following result establishes the integrability properties of the convolution of two functions.

Theorem 3 (Young’s Inequality). Let p,q,r ∈ [1,∞] be such that 1
p +

1
q = 1

r +1. For any f ∈ Lp

and g ∈ Lq, we have f ∗g ∈ Lr and

‖ f ∗g‖r ≤ ‖ f‖p · ‖g‖q.

To prove Young’s Inequality we need the following generalization of Hölder’s Inequality.

Proposition 4 (Hölder’s Inequality for 3 functions). Let f1, f2, f3 be measurable functions and
let a,b,c ∈ [1,∞] be such that 1

a +
1
b +

1
c = 1. Then∫

| f1 · f2 · f3|dm≤ ‖ f1‖a · ‖ f2‖b · ‖ f3‖c.

Proof. If a = ∞, then∫
| f1 · f2 · f3|dm≤ ‖ f1‖∞ ·

∫
| f2 · f3|dm≤ ‖ f1‖∞ · ‖ f2‖b · ‖ f3‖c,

where in the last step we used Hölder’s Inequality, since 1
b +

1
c = 1

∞
+ 1

b +
1
c = 1.

1
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Otherwise, let a′ ∈ (1,∞) be the conjugate exponent to a, namely a′ = a
a−1 , and define `= b

a′

and `′ = c
a′ . Notice that ` and `′ are conjugate exponents, since

1
`
+

1
`′
= a′

(
1
b
+

1
c

)
= a′

(
1− 1

a

)
= 1.

Then, using Hölder’s Inequality twice we get∫
| f1 · f2 · f3|dm≤ ‖ f1‖a ·

(∫
| f2 · f3|a

′
dm
)1/a′

≤ ‖ f1‖a · ‖ f2‖a′` · ‖ f3‖a′`′

= ‖ f1‖a · ‖ f2‖b · ‖ f3‖c,

which completes the proof. �

Exercise 5. Prove the following Generalized Hölder’s Inequality: for any n≥ 2, any p1, . . . , pn ∈
[1,∞] such that 1

p1
+ · · ·+ 1

pn
= 1, and for all measurable functions f1, . . . , fn, we have

‖ f1 · · · fn‖1 ≤ ‖ f1‖p1 · · ·‖ fn‖pn.

We are now ready to prove Young’s Inequality.

Proof of Young’s Inequality. If r = ∞, then, for every x ∈ R, Hölder’s Inequality yields

|( f ∗g)(x)| ≤
∫
| f (x−y)| · |g(y)|dy≤

(∫
| f (x− y)|p dy

)1/p

·
(∫
|g(y)|q dy

)1/q

= ‖ f‖p ·‖g‖q,

which implies the claim.
Consider now the case r < ∞. By definition, we have

|( f ∗g)(x)| ≤
∫
| f (x− y)| · |g(y)|dy

=
∫
(| f (x− y)|p · |g(y)|q)1/r · | f (x− y)|1−p/r · |g(y)|1−q/r dy.

Since
1
r
+

r− p
pr

+
r−q

qr
=

1
p
+

1
q
− 1

r
= 1,

we use the Hölder’s Inequality for 3 functions with a = r, b = pr
r−p and c = qr

r−q and we obtain

|( f ∗g)(x)|

≤
(∫
| f (x− y)|p · |g(y)|q dy

)1/r

·
(∫
| f (x− y)|(1−

p
r )

pr
r−p dy

) r−p
pr

·
(∫
|g(y)|(1−

q
r )

qr
r−q dy

) r−q
qr

=

(∫
| f (x− y)|p · |g(y)|q dy

)1/r

·
(∫
| f (x− y)|p dy

) 1
p ·

r−p
r

·
(∫
|g(y)|q dy

) 1
q ·

r−q
r

=

(∫
| f (x− y)|p · |g(y)|q dy

)1/r

· ‖ f‖
r−p

r
p · ‖g‖

r−q
r

q .

The inequality above holds also in the case p = 1 and q = r (or if q = 1 and p = r), but it suffices
to use the classical Hölder inequality to prove it.

Integrating, we obtain

‖ f ∗g‖r
r =

∫
|( f ∗g)(x)|r dx≤ ‖ f‖r−p

p · ‖g‖r−q
q

∫ (∫
| f (x− y)|p · |g(y)|q dy

)
dx.
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By Tonelli’s Theorem, we can swap the order of integration and conclude

‖ f ∗g‖r
r ≤ ‖ f‖r−p

p · ‖g‖r−q
q

∫ ∫
| f (x− y)|p · |g(y)|q dxdy

= ‖ f‖r−p
p · ‖g‖r−q

q

∫ (∫
| f (x− y)|p dx

)
|g(y)|q dy = ‖ f‖r

p · ‖g‖r
q,

which proves the theorem. �

Mollifiers. We now introduce the concept of mollification of a function. Let us fix a non-negative,
infinitely differentiable function ϕ : R→ R≥0 with compact support. Here, we can choose once
and for all

(1) ϕ(x) =

{
e−

1
1−x2 if |x|< 1,

0 otherwise.

Exercise 6. Verify that the function ϕ defined in (1) belongs to C ∞
c (R), the space of infinitely

differentiable functions with compact support.

Up to multiplying ϕ by a positive scalar, we can assume that
∫

ϕ dm = 1. For any ε > 0, we
define

ϕε(x) =
1
ε

ϕ

( x
ε

)
.

Notice that ϕε is supported in [−ε,ε] and still has integral 1.

Theorem 7. Let p ∈ [1,∞] and f ∈ Lp.
(a) For any ε > 0, the function f ∗ϕε is infinitely differentiable and

dn

(dx)n ( f ∗ϕε) = f ∗
(

dn

(dx)n ϕε

)
.

(b) We have f ∗ϕε → f almost everywhere as ε → 0.
(c) If p < ∞, then f ∗ϕε → f in Lp as ε → 0.

For any ε > 0, the smooth function f ∗ϕε is called a mollification of f , and ϕε is called a
mollifier.

Proof. Let us prove (a) for n = 1, the general case follows by induction and is left as an exercise
to the reader. Fix ε > 0 and let h 6= 0. By the Fundamental Theorem of Calculus, we have

( f ∗ϕε)(x+h)− ( f ∗ϕε)(x)
h

=
1
h

∫
f (y) · (ϕε(x+h− y)−ϕε(x− y))dy

=
∫

f (y) ·
(

1
h

∫ h

0
ϕ
′
ε(x− y+ξ )dξ

)
dy.

For any fixed x ∈ R and |h| ≤ 1, the function in brackets above (seen as a function of y) is
supported inside a bounded interval Ix centered at x of diameter independent of h. Thus, the
integrand function above is bounded by∣∣∣∣ f (y) ·(1

h

∫ h

0
ϕ
′
ε(x− y+ξ )dξ

)∣∣∣∣≤ ‖ϕ ′‖∞ · | f (y)| ·χIx(y),

which is integrable, since f ∈ Lp. By the Dominated Convergence Theorem,

lim
h→0

( f ∗ϕε)(x+h)− ( f ∗ϕε)(x)
h

=
∫

f (y) · lim
h→0

(
1
h

∫ h

0
ϕ
′
ε(x− y+ξ )dξ

)
dy

=
∫

f (y) ·ϕ ′ε(x− y)dy = ( f ∗ϕ
′
ε)(x).
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Let us show (b). For any fixed x ∈ R, we have

|( f ∗ϕε)(x)− f (x)|=
∣∣∣∣∫ ( f (y)− f (x)) ·ϕε(x− y)dy

∣∣∣∣≤ 1
ε

∫
| f (y)− f (x)| ·ϕ

(
x− y

ε

)
dy.

Since the function y 7→ ϕ
(x−y

ε

)
is supported in the interval Iε = [x− ε,x+ ε], we obtain

|( f ∗ϕε)(x)− f (x)| ≤ 2‖ϕ‖∞

|Iε |

∫
Iε

| f (y)− f (x)|dy.

By the Lebesgue Differentiation Theorem, the last term tends to 0 as ε → 0 for almost every
x ∈ R.

Let us finish the proof by showing (c). Fix δ > 0 and let us prove that there exists ε > 0 such
that ‖ f ∗ϕε − f‖p ≤ δ for all ε ≤ ε .

By the density of Cc(R) in Lp, there exists a continuous function g, with support inside a
bounded interval [−K,K] for some K > 0, such that ‖ f − g‖p ≤ δ/3. By (b), we have that
g ∗ϕε → g as ε → 0 almost everywhere. Since g ∗ϕε is a continuous function with support
contained in [−K−1,K +1] for all ε ≤ 1, the Dominated Convergence Theorem implies that
g∗ϕε → g in Lp as ε → 0. Hence, there exists ε > 0 so that ‖g∗ϕε −g‖p ≤ δ/3 for all ε ≤ ε .
Thus,

‖ f − f ∗ϕε‖p ≤ ‖ f −g‖p +‖g−g∗ϕε‖p +‖g∗ϕε − f ∗ϕε‖p ≤ 2δ/3+‖(g− f )∗ϕε‖p.

By Young’s Inequality with p = r and q = 1, and since ‖ϕε‖1 =
∫

ϕε dm = 1,

‖ f − f ∗ϕε‖p ≤ 2δ/3+‖g− f‖p · ‖ϕε‖1 ≤ δ .

The proof is therefore complete. �

As a consequence of the previous theorem, we deduce the following density result.

Corollary 8. The space C ∞
c (R) is dense in Lp for all p ∈ [1,∞).

Exercise 9. Prove Corollary 8.


