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D. Ravotti Homogeneous Dynamics

Welcome to the Homogeneous Dynamics course!

These lectures are intended to be an introduction to homogeneous dynamics, which nowadays
is a very active subject of research. Homogeneous dynamics lies at the intersection of many areas
in pure mathematics: of course, dynamics and ergodic theory, but also geometry, Lie group theory,
representation theory, and more. There are also remarkable connections to several problems in
number theory, some of which will be explored during the course.

The literature in the subject is vast and it would be impossible to cover it all. The choice I made
to select the specific topics which will be discussed during these lectures was motivated mainly by
two reasons. In part, of course, there are my personal preferences; more importantly, I wanted to
focus on concrete examples (where computations can be carried out explicitly) which can help to
build the intuition and provide insights on more general and abstract situations. It is my hope that
this introduction can sparkle the curiosity in students to pursue this line of research.

One final disclaimer before starting: these lecture notes are a work-in-progress, and as such
they need to be read with critical thinking. I tried to minimize the number of errors, but it would be
widely optimistic of me to believe that there are none. If you spot mistakes, or have any comment
in general, please let me know by sending me an email to davide.ravotti@gmail.com.

Davide Ravotti

1



Chapter 1

A quick recap: the case of linear flows on
tori

In this first chapter, we will quickly review some basic notions in dynamics and ergodic theory,
which the reader is assumed to be already familiar with. An exhaustive treatment of these topics
can be found, for example, in [4, Chapters 2, 4.3].

In parallel, we will look at linear flows on tori. Very roughly speaking, the course consists in
studying their non-Abelian analogues, as we will see later. Thus, focusing on this simple case can
be a nice “warm-up” exercise.

1.1 Smooth flows on manifolds

The subject of this course is a special class of smooth flows. Let us recall the general definition.

Definition 1.1. Let M be a smooth manifold, and let Diff(M) be the group of its diffeomorphisms.
A smooth flow ϕ : R×M→M is a smooth map which satisfies

ϕ0 = Id, and ϕt+s = ϕt ◦ϕs = ϕs ◦ϕt , for all t,s ∈ R,

where ϕt := ϕ(t, ·) ∈ Diff(M).

In particular, Definition 1.1 implies that the continuous curve t 7→ ϕt is a group homomorphism
between R and Diff(M), and {ϕt}t∈R is said to be a 1-parameter group of diffeomorphisms. We
will often identify ϕ with {ϕt}t∈R.

Given a smooth flow ϕ , we can define a vector field X on M by

X f (p) :=
d
dt

∣∣∣∣
t=0

f ◦ϕt(p), for all f ∈ C ∞(M) and p ∈M.

The vector field X is called the infinitesimal generator of ϕ . Vice-versa, one can prove that, at least
when M is compact, for any given smooth vector field X , there exists a unique smooth flow ϕ with
infinitesimal generator X .

From here onward, M always denotes a smooth manifold, not necessarily compact, and ϕ is a
smooth flow on M.

Let us turn to a very concrete example. Let Tn be the n-dimensional torus Tn := Rn/Zn. We
will denote points in Tn using the symbol J·K, namely JxK := x+Zn. For any v ∈ Rn \ {0}, we
define the linear flow in direction v to be the smooth flow ϕv on Tn given by

ϕ
v
t (JxK) = Jx+ tvK, for t ∈ R.
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It is easy to check that indeed ϕv is a well-defined smooth flow according to Definition 1.1. The
associated infinitesimal generator X is the derivative in direction v: for any p = JxK ∈ Tn,

X f (p) =
d
dt

∣∣∣∣
t=0

f (Jx+ tvK) = v ·∇JxK f =
n

∑
i=1

vi
∂ f
∂xi

(JxK).

In other words, under the usual identification of the tangent space TpTn at p with Rn, we have
X = v. The associated 1-parameter subgroup consists of the translations ϕv

t : JxK 7→ Jx+ tvK in
direction v.

Let us rephrase the example above in more algebraic terms. Our setting was the following. We
considered the Abelian group (Rn,+), and we fixed a 1-dimensional subgroup V = {tv : t ∈ R}<
Rn. This subgroup V is everywhere tangent to the constant vector field v ∈ Rn, where we identified
Rn = TxRn for all x ∈ Rn. In turn, V is identified with the 1-parameter group of translations

{(x 7→ x+ tv) : t ∈ R} ⊂ Diff(Rn).

We then fixed the discrete subgroup Zn <Rn and we considered the quotient space Tn =Rn/Zn. The
key observation is that the 1-parameter group of translations x 7→ x+ tv associated to v descends to
the quotient, which means that they commute with the canonical projection x 7→ JxK= x+Zn. This
tells us that, under the projection, we obtain a well-defined 1-parameter group of diffeomorphisms
of Tn, and hence a smooth flow ϕv.

Homogeneous flows, which are the subject of this course, are a “non-Abelian” generalization of
this simple example. Namely, we will replace

• Rn with a Lie group G (the Heisenberg group in Chapter 3 and SL(2,R) in Chapters 4–7),

• Zn with a lattice Γ (a discrete subgroup of G with some additional properties that we will
discuss in §2.4),

• Tn with the left1 quotient Γ\G = {Γg : g ∈ G},

• V = {tv : t ∈ R} with a 1-parameter subgroup {gt : t ∈ R} of G (generated by a “constant”
vector field, which in the case above was v ∈ Rn \{0}),

• ϕv
t : JxK 7→ Jx+ tvK with the multiplication on the right2 Γg 7→ Γg ·gt .

We will make this analogy precise in the next chapters.

1.2 The topology of orbits

Let ϕ : R×M→M be a smooth flow, and let p ∈M. The orbit of p is the set

Oϕ(p) = {ϕt(p) : t ∈ R} ⊂M.

Note that the orbit of any point p ∈M is an immersed smooth curve in M.
In dynamics, one is interested in the behaviour of orbits: do they “close up”? Do they accumulate

in some regions? Do they visit all parts of the space? From the topological point of view, it is
particularly important to try to understand their accumulation points and closure Oϕ(p)⊆M.

1Note that, in the Abelian case, left and right cosets coincide.
2Taking left quotients and multiplying on the right is the conventional choice, but of course one could do the opposite

(taking right quotients and multiplying on the left). Note that, again, multiplying on the right and projecting on the left
quotient Γ\G commute.
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Definition 1.2. A point p is a fixed point if Oϕ(p) = {p}. A point p is periodic if there exists T > 0
such that

ϕT (p) = p. (1.1)

If p is periodic but not a fixed point, its period is the smallest T > 0 for which (1.1) holds.

Exercise 1.3. (a) Show that the set of T ∈ R for which (1.1) holds is a subgroup of R, in
particular if p is periodic but not a fixed point, its period is well-defined.

(b) Show that, if p is a periodic point of period T , then its orbit is an embedded closed curve and

Oϕ(p) = {ϕt(p) : t ∈ [0,T ]}.

Periodic and fixed points have the smallest possible orbit closures, since their orbits are
themselves closed. On the opposite, we may have points with dense orbits, that is, points whose
orbit closure is the largest possible.

Definition 1.4. A smooth flow ϕ is minimal is all orbits are dense, namely if

Oϕ(p) = M, for all p ∈M.

Let us look at our motivating example. In the case of linear flows on the two dimensional torus,
we have a pleasant dichotomy.

Theorem 1.5. Let ϕv : T2→ T2 be a linear flow in direction v = (v1,v2) ∈ R2 \ {0}. If v1 and
v2 are rationally dependent, then every orbit is periodic; otherwise, if v1 and v2 are rationally
independent, the flow ϕv is minimal.

We will say that ϕv is a rational linear flow if we are in the first case, and it is an irrational
linear flow if we are in the second one.

Before diving into the proof of Theorem 1.5, let us make a couple of simple observations. First,
note that a rescaling av of v for some a > 0 does not change the behaviour of the orbits of the
flow. If v2 = 0, then v1 6= 0. It is clear that all orbits of ϕv are periodic of period 1/v1 and consist
of horizontal cirlces of the form T1×{p2}, with p2 ∈ T1, hence the result is proved in this case.
If v2 6= 0, then, without loss of generality, we can assume that v = (v,1). We divide the proof of
Theorem 1.5 into two cases: when v ∈Q (the rational case) and when v /∈Q (the irrational case).

Proof of Theorem 1.5 - Case v ∈Q. Let us write v = a/b in reduced terms. Then, we claim that
all orbits are periodic of period b. Indeed, let p = Jx1,x2K ∈ T2. Then,

ϕ
v
b (p) = Jx1 +b ·a/b,x2 +bK= Jx1,x2K+ Ja,bK= p.

If T > 0 is such that ϕv
T (p) = p, then, looking at its second coordinate, we see that x2 +T +Z=

x2 +Z. Hence T ∈ N, and, looking at the first coordinate, x1 +T ·a/b+Z= x1 +Z. This implies
that (Ta)/b ∈ Z. Since a and b are coprime by assumption, b divides T . This proves the claim and
hence the theorem in the rational case.

Proof of Theorem 1.5 - Case v /∈Q. We first claim that it is enough to prove the following state-
ment.

(?) The circle rotation Rv : T1 → T1 defined by Rv(JxK) = Jx+ vK is minimal (where, here,
JxK= x+Z).
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We leave as an exercise to the reader to check that indeed it is sufficient to prove (?). The idea
is that the orbit of a point p = Jx1,x2K under the flow ϕv is dense in T2 if and only if its intersection
with the horizontal circle T1×{Jx2K} is dense in T1×{Jx2K}. Indeed, the projection on the first
coordinate of the intersection of the orbit of p with the circle T1×{Jx2K} is precisely the orbit of
Jx1K under the rotation Rv.

We now focus on proving (?). Let p = JxK= x+Z ∈ T1 and ε > 0 be fixed; choose a natural
number N ≥ ε−1 and partition T1 ≈ [0,1) into N intervals Ik = [(k−1)N−1,kN−1) for k = 1, . . . ,N.
We need to show that the orbit of p visits all intervals Ik.

Let us consider the set ON = {p,Rv(p), . . . ,RN
v (p)}. Since |ON | = N +1, by the Pigeonhole

Principle, there exists a k̄ ∈ {1, . . . ,N} such that the interval Ik̄ contains at least two distinct elements
of ON , say Rn

v(p) and Rm
v (p), with n < m. Let us call w the fractional part of (m− n)v. For any

y ∈ [0,1), we have
Rm−n

v (JyK) = Jy+(m−n)vK= Jy+wK= Rw(JyK),

namely, the map Rm−n
v is again a rotation of angle w ∈ (0,1). Since we showed that the points

p′ = Rn
v(p) and Rw(p′) = Rm

v (p) are both in the same interval Ik̄, they are at distance less than
N−1. It follows that 0 < w < N−1 ≤ ε . Thus, the orbit of p under Rv contains the orbit of p under
Rm−n

v = Rw, which is a rotation of angle less than ε . Since this latter set clearly intersects all
intervals Ik, the proof is complete.

In general, it is a hopeless task to try to understand all orbit closures. They can be quite
complicated objects, with “fractal-like” structures and non-integer dimensions. However, in the
particular case of linear flows on T2, orbit closures are well-behaved and we managed to classify all
possibilities: we showed that all orbit closures are either the whole space T2 or circles isomorphic
to T1. In higher dimensions, a similar phenomenon occurs: orbit closures of any linear flow on Tn

are sub-tori isomorphic to Tk, for some k = 1, . . . ,n (see Section 1.3.4 below).

1.3 Elements of Ergodic Theory

Ergodic theory is the study of dynamical systems from the point of view of measure theory. The
measures on the phase space M that will be relevant for us are Borel invariant measures.

1.3.1 Invariant measures

Definition 1.6. Let ϕ be a smooth flow on M. A Borel measure µ on M is an invariant measure for
ϕ if for all Borel measurable sets A⊂M and for all t ∈ R,

µ(ϕt(A)) = µ(A).

If µ(M) = 1, then µ is a probability invariant measure. The triple (M,ϕ,µ) is called a probability
preserving flow (ppf, for short).

The previous definition extends to all functions in L1(M) = L1(M,µ): if (M,ϕ,µ) is a ppf,
then, for every function f ∈ L1(M) and for all t ∈ R, the function f ◦ϕt is in L1(M) and∫

M
f ◦ϕt dµ =

∫
M

f dµ.

Similarly, if f ∈ L2(M), then f ◦ϕt ∈ L2(M) for all t ∈ R and

‖ f ◦ϕt‖2 = ‖ f‖2 . (1.2)

5



D. Ravotti Homogeneous Dynamics

Let us see some examples of invariant measures. Clearly, the Lebesgue measure on the torus
T2 is an invariant measure for all linear flows ϕv. If the flow is irrational, we will see in Section
1.3.3 that there are no other invariant probability measures. However, if ϕv is rational, then we have
uncountably many invariant probability measures supported on periodic orbits. This is a general
fact: for any periodic orbit, there is an invariant probability measure supported on such orbit.

Exercise 1.7. (a) Let v = (v1,v2) ∈ R2 \ {0}, with v1,v2 rationally dependent. Let T be the
period of all orbits of ϕv. Show that

T =
min{‖w‖2 : w ∈ Rv∩Z2, w 6= 0}

‖v‖2
.

(b) For any p ∈M, let µp be the Borel measure defined by

µp(A) :=
1
T

Leb{t ∈ [0,T ] : ϕ
v
t (p) ∈ A}.

Show that µp is a probability invariant measure for ϕv.

(c) Prove that µp = µq if and only if Oϕv(p) = Oϕv(q). Deduce that ϕv has uncountably many
probability invariant measures.

It is actually easy to see that if there is more than one probability invariant measure, then there
are uncountably many. Indeed, any convex combination of (probability) invariant measures is a
(probability) invariant measure. In other words, probability invariant measures form a simplex in
the space of probability measures on M.

The reader might wonder whether we are sure to find, in general, at least one probability
invariant measure. When M is compact, the following result answers this question affirmatively.

Theorem 1.8 (Krylov-Bogolyubov). Let ϕ be a smooth flow on the compact manifold M. There
exists one invariant probability measure.

Proof. Recall that, when M is compact, the set of Borel (signed) measures coincides with C (M)∗,
the weak-∗ dual of C (M). Recall also that, by Banach-Alaoglu’s Theorem, the unit ball in C (M)∗,
which contains all (positive) probability measures, is weakly-∗ compact. Fix any p ∈ M, and
consider the family of (positive) probability measures {µT}T∈R given by

µT ( f ) :=
1
T

∫ T

0
f ◦ϕt(p)dt, for f ∈ C (M).

By compactness, there exists an increasing sequence Tn→ ∞ such that µTn weakly-∗ converges to a
(positive) probability measure µ . We claim that µ is invariant. Let f ∈ C (M) and r ∈ R; then,

|µTn( f ◦ϕr)−µTn( f )|= 1
Tn

∣∣∣∣∫ Tn

0
f ◦ϕt+r(p)dt−

∫ Tn

0
f ◦ϕt(p)dt

∣∣∣∣
=

1
Tn

∣∣∣∣∫ Tn+r

Tn

f ◦ϕt(p)dt−
∫ r

0
f ◦ϕt(p)dt

∣∣∣∣
≤

2r‖ f‖C (M)

Tn
→ 0.

Therefore,
0 = lim

n→∞
|µTn( f ◦ϕr)−µTn( f )|= |µ( f ◦ϕr)−µ( f )|,

which shows that µ is an invariant measure for ϕ .
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We will mostly be concerned with smooth invariant measures, namely measures given by
integrating a volume form on M. In this case, we can check whether a smooth measure is invariant
by computing its Lie derivative with respect to the infinitesimal generator of the flow.

Proposition 1.9. Let ϕ be a smooth flow with infinitesimal generator X, and let µ be a smooth
probability measure given by a volume form ω on M. Then µ is invariant if and only if LX(ω) = 0,
where LX(ω) = d(iX ω) is the Lie derivative of ω with respect to X and i is the contraction
operator.

Proof. Let (ϕt)
∗ denote the pull-back by ϕt . By definition of the Lie derivative,

LX(ω) =
d
dt

∣∣∣∣
t=0

(ϕt)
∗(ω),

hence (ϕt)
∗(ω) = ω if and only if LX(ω) = 0. By Cartan’s formula,

LX(ω) = d(iX ω)+ iX(dω) = d(iX ω),

which follows from the fact that dω = 0 since ω is a n-form, where n = dim(M).

Exercise 1.10 (Invariant measures of time-changes). Let ϕ be a smooth flow on M with infinitesimal
generator X, and let µ be a smooth probability invariant measure. Show that, for any smooth
positive function α : M→ R>0, the flow3 generated by the vector field αX preserves the measure
equivalent to µ with density 1/α .

Once we have chosen a probability invariant measure, we can ask about the properties of typical
points, in other words the properties that are satisfied up to exceptional sets of measure zero. A
fundamental result is the recurrence theorem by Poincaré, which, roughly speaking, says that
typical orbits will come back close to their initial point infinitely often.

Theorem 1.11 (Poincaré Recurrence Theorem). Let (M,ϕ,µ) be a ppf. If A⊂M is a measurable
(Borel) set, for almost every p ∈ A there exists an increasing sequence Tn→∞ such that ϕTn(p) ∈ A.

1.3.2 Ergodicity and the Ergodic Theorems

Given a flow ϕ on M, we say that a measurable set A⊂M is invariant if ϕt(A) = A for all t ∈ R.
If (M,ϕ,µ) is a ppf and A⊂M is an invariant set of positive measure, then we can consider the
subsystem (A,ϕ,µA) given by the restriction of the flow ϕ to A with the conditional probability
invariant measure defined by

µA(B) := µ(B∩A)/µ(A), for any measurable set B.

When we have an invariant set of positive measure, we can then reduce ourselves to study a “simpler”
system. Intuitivley, the notion of ergodicity plays the role of “indecomposability” in the context of
ppf’s. That is to say, an ergodic ppf cannot be decomposed into non-trivial invariant subsystems.

Definition 1.12. Let (M,ϕ,µ) be a ppf. We say that µ is ergodic, or that (M,ϕ,µ) is an ergodic
flow4 if for every invariant measurable set A⊂M we have µ(A) = 0 or µ(A) = 1.

We recall the following characterization of ergodicity.

3This flow is called the time-change generated by α .
4Sometimes, by a little abuse of notation, when the reference measure µ is clear from the context, we will say that ϕ

is ergodic.
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Proposition 1.13. Let (M,ϕ,µ) be a ppf. The following are equivalent:

1. µ is ergodic,

2. for every measurable set A⊂M such that µ(ϕt(A)4A) = 0 for all t ∈ R, then µ(A) = 0 or
µ(A) = 1,

3. if f : M→ C is a measurable function such that f ◦ϕt = f almost everywhere for all t ∈ R,
then there exists c ∈ C such that f = c almost everywhere,

4. if f ∈ L2(M) is an invariant function, namely if f ◦ϕt = f in L2 for all t ∈R, then there exists
c ∈ C such that f = c in L2.

Let us go back once more to the case of linear flows on tori and let us consider the ppf
(T2,ϕv,Leb). It is easy to see that, if the flow ϕv is rational, then it is not ergodic. Indeed, any set
of the form

Ar =
⋃
{Oϕv(p) : p = Jx1,0K ∈ T2 with 0≤ x1 ≤ r}

is an invariant set of with Leb(Ar) = r. Choosing r ∈ (0,1) appropriately gives an example of a
non-trivial invariant set, thus disproving ergodicity.

Exercise 1.14. (a) Show that the measures µp of Exercise 1.7 are ergodic.

(b) Show that any non-trivial convex combination of µp and µq, for p and q on different orbits,
is not ergodic.

(c∗) Finally, show that if µ is an ergodic invariant probability measure, then µ = µp for some
p ∈ T2.

On the other hand, the Lebesgue measure is ergodic when the flow ϕv is irrational. There are
several ways of proving this fact, here we see a proof that uses Fourier analysis.

Theorem 1.15. Let ϕv be an irrational linear flow on T2. Then, the Lebesgue measure Leb is
ergodic.

Proof. We denote by · the scalar product in R2. For any f ∈ L2(T2), we can write a Fourier
expansion

f (JxK) = ∑
n∈Z2

fn e2πin·x, with ∑
n∈Z2

| fn|2 = ‖ f‖2
2 .

Assume that f is an invariant function, that is assume that f ◦ϕv
t = f for all t ∈ R, where the

equality holds in L2(T2). We want to show it is constant in L2. For all x ∈ R2 and t ∈ R we have

∑
n∈Z2

fn e2πin·x = f (JxK) = f (Jx+ tvK) = ∑
n∈Z2

fn e2πin·(x+tv) = ∑
n∈Z2

fn e2πitn·ve2πin·x.

By uniqueness of the coefficients, we must have

fn = fn e2πitn·v for all n ∈ Z2.

If n 6= 0, then either fn = 0 or e2πitn·v = 1 for all t ∈ R, and this latter condition is verified if and
only if n ·v = 0. Since v has rationally independent coordinates, this second possibility cannot
occur; hence we deduce fn = 0 for all n ∈ Z2 \{0}. This proves that f = f0 is equal to a constant
in L2(T2), and thus completes the proof.

Let (M,ϕ,µ) be an ergodic ppf. The ergodic theorems of Von Neumann and Birkhoff relate the
time averages 1

T

∫ T
0 f ◦ϕt dt of a measurable function f ∈ L2(M) (or L1(M)) to the space average

µ( f ) =
∫

M f dµ .
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Theorem 1.16 (Von Neumann Ergodic Theorem). Let (M,ϕ,µ) be a ppf. For every f ∈ L2(M),
let P f ∈ L2(M) be the projection of f onto the closed subspace of invariant functions. Then, the
ergodic averages of f converge in L2(M) to P f , namely∥∥∥∥ 1

T

∫ T

0
f ◦ϕt(p)dt−P f (p)

∥∥∥∥
2
→ 0.

In particular, if (M,ϕ,µ) is ergodic, P f = µ( f ) and hence

1
T

∫ T

0
f ◦ϕt dt→ µ( f ) in L2(M).

Theorem 1.17 (Birkhoff Ergodic Theorem). Let (M,ϕ,µ) be a ppf. For every f ∈ L1(M), there
exists f ∗ ∈ L1(M) with

µ( f ) = µ( f ∗), and f ∗ ◦ϕt = f ∗ for all t ∈ R,

where the latter equality holds in L1(M), such that

1
T

∫ T

0
f ◦ϕt(p)dt→ f ∗(p),

for almost every p ∈M. If (M,ϕ,µ) is ergodic, then f ∗(p) = µ( f ) almost everywhere.

1.3.3 Unique ergodicity

In Theorem 1.8, we saw that a smooth flow on a compact manifold M always has an invariant
probability measure, and we also noticed that, if there is more than one, then there are uncountably
many. The former case deserves a special name.

Definition 1.18. Let ϕ be a smooth flow on a compact manifold M. If there exists only one invariant
probability measure µ , the system (M,ϕ,µ) (or simply ϕ) is said to be uniquely ergodic.

The reader might be wondering what the uniqueness of the invariant measure has to do with
ergodicity. The following proposition shows that, in the case of a single invariant measure, ergodicity
is automatically guaranteed.

Proposition 1.19. Let ϕ be a smooth flow on a compact manifold M. The set of ergodic probability
measures for ϕ coincides with the set of extremal points5 of the simplex of invariant probability
measures. In particular, if there exists a unique invariant probability measure µ , then it is ergodic.

If (M,ϕ,µ) is uniquely ergodic, then, from the Ergodic Theorem, Theorem 1.17, we know that
the ergodic averages of any L1-function converge almost everywhere to its space average. On the
other hand, one can show that, if the function is continuous, then the convergence is uniform.

Proposition 1.20. Let ϕ be a smooth flow on a compact manifold M. The following are equivalent:

1. ϕ is uniquely ergodic,

2. there exists a unique ergodic invariant probability measure,

3. for every f ∈ C (M) there exists a constant C f such that, for all p ∈M,

1
T

∫ T

0
f ◦ϕt(p)dt→C f , (1.3)

5A point in a simplex is extremal if it cannot be expressed as a non-trivial convex combination of two other points.
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4. for every f ∈ C (M), the convergence in (1.3) is uniform over M.

Under any of the assumptions above, the constant C f in (1.3) equals µ( f ), where µ is the unique
invariant probability measure.

We have seen already that for rational linear flows ϕv on T2 there exist uncountably many
invariant measures. Let us now see that in the other case, when the coordinates of v are rationally
independent, the flow is uniquely ergodic.

Theorem 1.21. Let ϕv be an irrational linear flow on T2. Then, (T2,ϕv,Leb) is uniquely ergodic.

Proof. Let f ∈ C (M) be fixed, and let us prove that the ergodic averages

AT f (p) :=
1
T

∫ T

0
f ◦ϕ

v
t (p)dt

converge uniformly to Leb( f ) =
∫
T2 f dLeb. We claim that the family

A := {AT f}T>0 ⊂ C (M).

is pre-compact in C (M), i.e., A has a compact closure. In order to do this, we check the assumptions
of the Ascoli-Arzelà Theorem.

It is easy to see that A is equibounded: since ‖ f ◦ϕv
t ‖∞

= ‖ f‖
∞

for all t ∈ R, it follows that,
for any T > 0 and for all p ∈ T2, we have

|AT f (p)| ≤ 1
T

∫ T

0
‖ f‖

∞
dt = ‖ f‖

∞
.

Let us verify that A is equicontinuous. We will use the fact that ϕv
t is an isometry for all t ∈ R:

if we denote by d the Euclidean distance on T2, we have that d(ϕv
t (p),ϕv

t (q)) = d(p,q) for all
t ∈ R. With this in mind, let us fix ε > 0. Since f is uniformly continuous, there exists δ > 0
such that | f (p)− f (q)|< ε whenever d(p,q)< δ . Then, for any T > 0, if p,q ∈ T2 are such that
d(p,q)< δ , we get

|AT (p)−AT (q)| ≤
1
T

∫ T

0
| f ◦ϕ

v
t (p)− f ◦ϕ

v
t (q)|dt <

1
T

∫ T

0
ε dt = ε.

By the Ascoli-Arzelà Theorem, the closure of A is compact in C (M), in particular A has limit
points. Let Tn→ ∞ and g ∈ C (M) be such that

ATn f → g in C (M).

By Birkhoff Ergodic Theorem, Theorem 1.17, for almost every point p we have

ATn f (p)→
∫
T2

f dLeb,

therefore g = Leb( f ) almost everywhere. Since g is continuous, the equality must hold everywhere.
We have showed that all limit points of A are the constant function Leb( f ). Therefore, the

limit point is unique and we conclude that the whole family converges in C (M), namely

AT f =
1
T

∫ T

0
f ◦ϕ

v
t dt→

∫
T2

f dLeb

uniformly on T2, which concludes the proof.
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We remark that the proof of Theorem 1.21 works in a greater generality: any isometry of a
compact space which has an ergodic measure with full support is uniquely ergodic.

Exercise 1.22. Let (T2,ϕv,Leb) be an irrational linear flow.

(a) Show that for any set A⊂ T2 with non-empty interior there exists TA > 0 such that for all
points p ∈M there exists t ∈ [0,TA] such that ϕv

t (p) ∈ A (all points enter A before time TA).

(b∗) Provide a counterexample to (a) when we drop the assumption on A, namely give an example
of a set A⊂ T2 with positive measure and empty interior such that

1. almost every point enters A,

2. at least one point p ∈M never enters A,

3. for every T > 0 there exists a set BT ⊂ T2 of positive measure such that all points in
BT do not enter A in the interval [0,T ].

1.3.4 A glimpse at Ratner’s Theorems

Let us summarize what we proved in the case of linear flows on the 2 dimensional torus:

• If the generator v has rationally independent coordinates, then

1. the orbit closure of any point is the whole space T2 (Theorem 1.5),

2. the orbit of any point equidistributes in T2 (Theorem 1.15),

3. Leb is the only ergodic probability measure for ϕv (Theorem 1.21).

• If the generator v has rationally dependent coordinates, then

1. all orbits are periodic, hence closed (Theorem 1.5),

2. all orbits are not equidistributed in T2 (but, clearly, they equidistribute in their closure),

3. any ergodic measure is the normalized Lebesgue measure on a periodic orbit (Exercise
1.14).

It is possible to generalize these results to linear flows on higher dimensional tori. Let us first
recall some definitions.

A subspace V < Rn is called rational if the discrete Abelian group V ∩Zn has rank precisely
equal to k := dim(V ). It is easy to see that this happens exactly when we can find a basis of V
consisting of vectors in Zn. The subspace V carries a smooth measure, that we call LebV , given by
the Lebesgue measure on V normalized so that the discrete subgroup V ∩Zn has covolume 1 (see,
e.g., Exercise 1.7). This measure descends to a measure on the k-dimensional torus V/(V ∩Zn), as
well as on its affine translates x+V/(V ∩Zn) for all x ∈ Rn. By a little abuse of notation, we will
still call LebV any of these affine measures.

Theorem 1.23. Let ϕv : R×Tn→ Tn be a linear flow on Tn, with v ∈ Rn \ {0}. There exists a
rational subspace V < Rn of dimension k ∈ {1, . . . ,n} which contains the line Rv for which the
following holds.

1. (Orbit closure classification) The orbit closure of any point is an affine k-dimensional torus,
namely for all p = JxK ∈ Tn we have

Oϕv(p) = x+V/(V ∩Zn).

11
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2. (Equidistribution) The orbit of any point p ∈ Tn equidistributes in its closure with respect to
the affine measure LebV .

3. (Measure classification) Any ergodic measure for ϕv is an affine measure LebV on the affine
torus x+V/(V ∩Zn) for some x ∈ Rn.

Theorem 1.23 can be seen as a very simple case of a series of profound and general theorems
by Marina Ratner which classify all possible orbit closures for unipotent actions, show that all
orbits equidistribute in their closure, and prove that any ergodic measure is the affine translate of the
Lebesgue (Haar) measure on a intermediate subgroup. The purpose of this complicated comment is
only to whet you appetite for what will come in the rest of the course.

1.4 Further chaotic properties

1.4.1 Weak mixing

Let (M,ϕ,µ) be a ppf. As we have seen in (1.2), for every t ∈ R the Koopman operator

Ut : L2(M)→ L2(M), Ut f = f ◦ϕt

is unitary. By Proposition 1.13, the flow ϕ is ergodic if and only if the eigenspace corresponding to
the eigenvalue 1 has dimension 1, and consists of constant functions. Since Ut is unitary, if there
are other eigenvalues, they must have modulus 1.

Definition 1.24. We say that the ppf (M,ϕ,µ) is weak mixing if the only solutions to

Ut f = e2πitα f in L2(M) for all t ∈ R

are given by α = 0 and f = c for some c ∈ C.

As usual, when the reference measure µ is clear from the context, we will often simply say that
ϕ is weak mixing when the condition in Definition 1.24 is satisfied.

Clearly, a weak mixing ppf is also ergodic. The converse, however, is not true, and a family of
counterexamples is given precisely by our irrational linear flows.

Lemma 1.25. Any linear flow (T2,ϕv,Leb) is not weak mixing.

Proof. It is sufficient to consider the irrational case, since we already know that rational linear
flows are not ergodic and hence cannot be weak mixing. We claim that for any n ∈ Z2 \{0}, the
function

fn(JxK) = e2πin·x ∈ L∞(T2)⊂ L2(T2)

is a non-constant eigenfunction, and the α as in Definition 1.24 is α = n ·v 6= 0. Indeed, for any
t ∈ R, we have

Ut fn(JxK) = fn(Jx+ tvK) = e2πin·(x+tv) = e2πitn·v e2πin·x = e2πitα fn(JxK).

Thus, irrational linear flows are ergodic but not weak-mixing.

Weak-mixing is a spectral property, in the sense that it concerns the spectrum of the Koopman
operators Ut of the system. If they have no pure point component (no eigenvalues), the flow is
weak mixing. There are other equivalent characterizations of weak-mixing, which have a more
“dynamical flavour”; we summarize them in Proposition 1.26 below.

Proposition 1.26. Let (M,ϕ,µ) be a ppf. The following are equivalent.

12
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1. (M,ϕ,µ) is weak mixing.

2. For any f ,g ∈ L2(M),

lim
T→∞

1
T

∫ T

0

∣∣∣∣∫M
f ◦ϕt · ḡdµ−µ( f )µ(ḡ)

∣∣∣∣dt = 0.

3. For any f ,g ∈ L2(M),

lim
T→∞

1
T

∫ T

0

∣∣∣∣∫M
f ◦ϕt · ḡdµ−µ( f )µ(ḡ)

∣∣∣∣2 dt = 0.

4. For any f ,g ∈ L2(M), there exists a set J = J f ,g ⊂ R of zero density such that

lim
T→∞,T /∈J

∫
M

f ◦ϕT · ḡdµ = µ( f )µ(ḡ).

5. The product measure µ×µ is ergodic for the flow ϕ×ϕ on M×M.

6. The product measure µ×µ is weak mixing for the flow ϕ×ϕ on M×M.

7. For any ergodic ppf (N,ψ,ν), the system (M×N,ϕ×ψ,µ×ν) is ergodic.

It might be worth for the reader to compare conditions 2–4 of Proposition 1.26 with the
following equivalent definition of ergodicity.

Exercise 1.27. Let (M,ϕ,µ) be a ppf. Show that it is ergodic if and only if for any f ,g ∈ L2(M)
we have

lim
T→∞

1
T

∫ T

0

(∫
M

f ◦ϕt · ḡdµ

)
dt = µ( f )µ(ḡ).

Deduce in particular that a weak mixing ppf is ergodic.

1.4.2 Mixing

Mixing, sometimes called strong mixing, is an even stronger property that, roughly speaking, says
that any two events become asymptotically independent.

Definition 1.28. We say that the ppf (M,ϕ,µ) is (strong) mixing if for any two observables
f ,g ∈ L2(M), the correlations decay, namely if

〈 f ◦ϕt ,g〉=
∫

M
f ◦ϕt · ḡdµ → µ( f )µ(ḡ),

as t→ ∞.

It is clear from Proposition 1.26-(4) that any mixing ppf is also weak mixing. The converse,
however, is not true: there are weak mixing ppf’s which are not strong mixing. The first examples
of weak mixing but not mixing transformations were constructed by cutting-and-stacking methods.
In the context of flows, typical translation flows on translation surfaces and typical minimal area-
preserving flows on higher genus surfaces are also natural classes of examples of weak mixing
flows that are not mixing. It is also interesting to notice that, by the Halmos-Rokhlin Theorem,
weak mixing is a generic property, whereas mixing is meager. In this course, however, the flows
we will encounter are either not weak mixing (the nilflows in Chapter 3) or mixing (the geodesic
and horocycle flows in Chapters 4–7).

Returning to our case study, we already know from Lemma 1.25 that irrational linear flows are
not weak mixing, hence they cannot possibly be mixing. We can actually prove a stronger result,
namely they have the so-called rigidity property.
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Exercise 1.29. Let v = (v,1) ∈ R2, with v /∈Q.

(a) Prove that the linear flow ϕv is rigid, namely there exists an increasing sequence tn→ ∞

such that for any measurable set A⊂ T2 we have

Leb(A4ϕ
v
tn(A))→ 0, as n→ ∞.

(b∗) Even more, find an explicit increasing sequence tn→ ∞ such that for any set Q of the form
Q = I1× I2 +Z2, where I1, I2 ⊂ [0,1) are intervals, we have

Leb(Q∩ϕ
v
tn(Q))≥ Leb(Q)− t−2

n ,

for all n ∈ N sufficiently large (Hint: it might be useful to consider the continued fraction
expansion of v).

(c) Conclude in particular that ϕv is not mixing.

One can also ask about the correlations of several events or observables, leading to the following
definition.

Definition 1.30. We say that the ppf (M,ϕ,µ) is mixing of order k or k-mixing if for any k
(real-valued) observables f1, . . . , fk ∈ L2(M) we have∫

M
f1 · f2 ◦ϕt2 · · · fk ◦ϕtk dµ → µ( f1) · · ·µ( fk),

as t2, t3− t2, . . . , tk− tk−1→ ∞.
We say that the ppf (M,ϕ,µ) is mixing of all orders if it is mixing of order k for all k ≥ 2.

It is currently unknown whether mixing implies mixing of all orders. This open question is
known as the “Rokhlin Problem”.

1.5 Outline of the course

In Chapter 2, we present all the relevant background material on matrix Lie groups. We will
introduce their associated Lie algebras, which can be described as the space of all left-invariant
vector fields. We will then study the induced flows using the exponential map. In Section 2.3, we
introduce the Haar measure, which is the invariant measure we will be interested in, the Killing
form and the Casimir operator. These last two objects will play a role in the final chapter of these
notes. Finally, we define homogeneous spaces as the smooth manifolds obtained as quotients of Lie
groups by lattices.

In Chapter 3, we focus on Heisenberg nilflows. We describe them using the so-called exponential
coordinates and we classify all possible Heisenberg nilmanifolds. We then show that Heisenberg
nilflows are never mixing, but typically relatively mixing and uniquely ergodic. In Section 3.3, we
point out an interesting connection between Heisenberg nilflows and theta sums (or quadratic Weyl
sums), which are classical objects in analytic number theory.

In Chapter 4, we study in detail the action of PSL(2,R) on the hyperbolic plane (namely, on its
upper-half plane model), which is first introduced in §2.3. We define the geodesic and horocycle
flow as particular cases of homogeneous flows on quotients of PSL(2,R). As an important example,
we introduce the Modular Surface.

Chapter 5 is devoted to the study of the ergodic properties of geodesic and horocycle flow. We
prove that they are ergodic and mixing.
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In Chapter 6, we study the connection between the geodesic flow on the Modular Surface and
continued fractions. This fascinating topic dates back to Artin [1], but we will follow an elegant
presentation by Series [17].

The final part, Chapter 7, is devoted to the treatment of more advanced material. We prove
unique ergodicity of the horocycle flow on compact manifolds, a result originally due to Furstenberg
[8]. The proof we present in these notes is due to Coudène [3]. We then discuss the generalizations
of this result to finite volume, noncompact spaces and we state Ratner’s Theorem [15] on measure
classification in the case of unipotent flows. We then study some quantitative properties. We present
a special case of Ratner’s quantitative mixing result [14] for geodesic and horocycle flow and a
special case of Flaminio and Forni’s result [6] on asymptotics of horocycle averages, but following
the proof in [16].
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Chapter 2

Lie Groups

In this section, we introduce and study Lie groups, in particular matrix Lie groups, and their Lie
algebras. We introduce the objects and some fundamental tools we are going to study in this course:
homogeneous flows, Haar measures, the Adjoint representation and the Casimir operator. Excellent
references for these topics are the books [13] and [12]

The reader will benefit from some familiarity with basic notions in differential topology, such
as tangent spaces, vector fields, and differential forms.

2.1 Matrix Lie groups

2.1.1 Definitions

Definition 2.1. A Lie group G is a group (G, ·) endowed with a differential structure such that both
the multiplication map and the inverse map

G×G→ G, and G→ G

(g,h) 7→ gh g 7→ g−1

are smooth.

If G is a Lie group, it follows immediately from the definition that, for any g ∈ G, the left
multiplication map Lg : G→ G given by Lg(h) = gh and the right multiplication map Rg : G→ G
given by Rg(h) = hg are smooth maps.

The simplest example of a Lie group is (Rn,+) equipped with the trivial atlas. It is clear that
the maps

Rn×Rn→ Rn, and Rn→ Rn

(x,y) 7→ x+y x 7→ −x

are smooth. The space Mat(n,R) of square matrices of size n with real coefficients is also a Lie
group for the addition operation, since it is isomorphic to Rn2

(not only as Abelian groups, but also
as vector spaces). Similarly, we can see that the torus Tn = Rn/Zn is a Lie group. Notice that the
projection map π : Rn→Rn/Zn, π(x) = JxK= x+Zn, is a local homeomorphism; that is, for every
p ∈ Tn and any r ∈ (0,1) there exists x ∈ Rn such that the restriction π|B(x,r) : B(x,r)→ B(p,r) of
π to the ball centered at x of radius r is a homeomorphism on its image. Then, one can construct
an atlas on Tn by means of (π|B(x,r))−1 : B(p,r)→ Rn. The transition maps between charts are
translations by elements of Zn. In this atlas, the group operations on Tn, as a quotient group of Rn

are smooth.
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Exercise 2.2. (a) Show that the circle S1 = {z ∈ C : |z|= 1} is a Lie group.

(b) Characterize for which v = (v1,v2) ∈ R2 the subgroup {JtvK : t ∈ R} of T2 is a Lie group
(with respect to the induced topology of T2).

In all the simple examples we have seen above, the group is Abelian. This is not an interesting
situation; our focus will be on non-Abelian groups.

Lemma 2.3. The general linear group

GL(n,R) = {g ∈Mat(n,R) : detg 6= 0}

with matrix multiplication is a (non-Abelian) Lie group.

Proof. It is clear that GL(n,R) is a smooth manifold, since it is an open subset of Mat(n,R)'Rn2
,

and the restriction of the coordinate maps to this open subset defines an atlas of smooth charts. We
only need to verify that multiplication and inversion are smooth with respect to this atlas. Matrix
multiplication is smooth since, in these charts, it is a polynomial map; similarly, taking the inverse
is also a polynomial map in coordinates by the Cramer’s rule.

As a consequence of the following lemma, whose proof can be found, for example, in [13,
Proposition 7.11], we get many more examples of Lie groups.

Proposition 2.4. Let H be a closed subgroup of a Lie group G. Then H is an embedded submanifold
of G and hence a Lie group.

Proposition 2.4 motivates the following definition.

Definition 2.5. A (real) matrix Lie group is a closed subgroup G of GL(n,R).

A matrix Lie group is thus a Lie group according to Definition 2.1. We remark that the converse
is not true, namely there exists Lie groups that are not matrix Lie groups1. However, we will not
deal with them in this course; actually, the examples of matrix Lie groups that we will mostly be
interested in are the special linear group of degree 2

SL(2,R) = {g ∈ GL(2,R) : detg = 1},

and the Heisenberg group

Heis =


1 x z

0 1 y
0 0 1

 : x,y,z ∈ R

 .

2.1.2 Tangent spaces and geometric tangent vectors

Proposition 2.4 states that a matrix Lie group G is an embedded submanifold in Mat(n,R)' Rn2
.

In particular, we can look at the set of geometric tangent vectors at any point g ∈ G; that is, at the
set of vectors in Rn2

which are parallel to the tangent space at g. We will denote by g the set of
geometric tangent vectors at the identity e ∈ G, more precisely we define

g :=
{

γ̇(0) =
d
dt

∣∣∣∣
t=0

γ(t) : γ : R→ G is a smooth curve with γ(0) = e
}
.

Lemma 2.6. If G is a matrix Lie group, the set g is a subspace of Mat(n,R).
1For example, the universal cover of SL(2,R).
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Proof. The zero matrix 0 ∈Mat(n,R) belongs to g, since it is the derivative of the constant curve
t 7→ e ∈G. Let γ̇(0) and η̇(0) be two geometric tangent vectors at e, and let us check that their sum
is a geometric tangent vector as well. Define the curve (γ ·η)(t) := γ(t)η(t). Then, (γ ·η)(0) = e,
and, using the product rule, its geometric tangent vector is

d
dt

∣∣∣∣
t=0

(γ ·η)(t) = γ̇(0)η(0)+ γ(0)η̇(0) = γ̇(0)+ η̇(0),

hence γ̇(0)+ η̇(0) ∈ g. Finally, let us check that g is closed under scalar multiplication. Let
γ̇(0) ∈ g, and let a ∈ R. Then, the curve (aγ)(t) := γ(at) is a smooth curve such that (aγ)(0) = e
and

d
dt

∣∣∣∣
t=0

(aγ)(t) = aγ̇(0) ∈ g,

which completes the proof.

Let us see a concrete example: let us find the space sl(2,R) of geometric tangent vectors of
SL(2,R) at the identity e =

(
1 0
0 1

)
. If we define u(t) =

(
1 t
0 1

)
, then we obtain a smooth function

u : R→ SL(2,R) and

u := u̇(0) =
d
dt

∣∣∣∣
t=0

(
1 t
0 1

)
=

(
0 1
0 0

)
∈ sl(2,R).

In a similar way, by looking at the smooth curves a(t) :=
(

et/2 0
0 e−t/2

)
and v(t) :=

(
1 0
t 1

)
, we find that

u,a,v ∈ sl(2,R), where

a :=
(1

2 0
0 −1

2

)
, and v :=

(
0 0
1 0

)
.

In particular, if we denote by tr(x) the trace of the matrix x, by Lemma 2.6 we get

span{u,a,v}= {x ∈Mat(2,R) : tr(x) = 0} ⊆ sl(2,R).

Let us show that equality holds. If γ(t)=
(

a(t) b(t)
c(t) d(t)

)
is a smooth curve in SL(2,R) with γ(0)=

(
1 0
0 1

)
,

then we have a(t)d(t)−b(t)c(t) = 1 for all t ∈ R. Differentiating at t = 0, we get

0 = ȧ(0)d(0)+a(0)ḋ(0)− ḃ(0)c(0)−b(0)ċ(0) = ȧ(0)+ ḋ(0).

This shows that γ̇(0) ∈ {x ∈Mat(2,R) : tr(x) = 0}, and hence proves the equality

sl(2,R) = {x ∈Mat(2,R) : tr(x) = 0}.

Exercise 2.7. Find the space h of geometric tangent vectors of Heis at the identity.

If x,y ∈ g are two geometric tangent vectors of a matrix Lie group G, by Lemma 2.6, their sum
x+y is still in g, as well as any of their scalar multiples. We define now a bilinear, antisymmetric
operation on geometric tangent vectors, which we call the bracket, and will turn the space g into an
algebra. The geometric interpretation of this operation will become clear in a little while.

If G⊂ GL(n,R) is a matrix Lie group, define the bracket operation

[·, ·]g : g×g→Mat(n,R) by [x,y]g := x ·y−y ·x,

where · denotes the matrix multiplication in Mat(n,R). From now on, we will often suppress the
symbol ·, which should be clear from the context. The definition immediately implies that the
bracket of a vector with itself is zero.
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Exercise 2.8. Show that [·, ·]g is bilinear, antisymmetric and satisfies the Jacobi identity: for all
x,y,z ∈ g, we have

[[x,y]g,z]g+[[y,z]g,x]g+[[z,x]g,y]g = 0.

In sl(2,R), one can check that the nontrivial possible brackets of the basis elements u,a,v are

[a,u]sl(2,R) =−[u,a]sl(2,R) = u, [a,v]sl(2,R) =−[v,a]sl(2,R) =−v, (2.1)

[u,v]sl(2,R) =−[v,u]sl(2,R) = 2a. (2.2)

Notice in particular that the bracket of any two vectors in sl(2,R) is again an element of sl(2,R).
Indeed, this is no coincidence, as the next lemma shows.

Lemma 2.9. (a) For all g ∈ G and all x ∈ g, we have

g−1xg ∈ g.

(b) The space g is closed under bracket [·, ·]g.

Before proving the lemma, let us note that, by part (a), the map

Ad(g) : x 7→ g−1xg

is an invertible linear transformation of g for any g ∈ G, the inverse being (Ad(g))−1 = Ad(g−1).
We call Ad(g) ∈GL(g) the Adjoint of g. As we mentioned, a geometric interpretation of these facts
will come later on.

Proof of Lemma 2.9. Let γ be a smooth curve such that γ̇(0) = x. Then, for all g ∈ G, the map
γg(t) := g−1γ(t)g is a smooth curve in G with γg(0) = g−1g = e. Differentiating at t = 0, we get

d
dt

∣∣∣∣
t=0

γg(t) = g−1
(

d
dt

∣∣∣∣
t=0

γ(t)
)

g = g−1xg ∈ g,

which proves (a).
In order to prove (b), let x,y∈ g; we need to show that [x,y]g ∈ g. Let γ(t) be such that γ̇(0) = x.

By (a), we know that
η(t) := γ(t)yγ(t)−1 ∈ g for all t ∈ R.

Moreover, since γ is smooth and multiplying matrices is a smooth map as well, the function η

defines a smooth curve in g. In particular, the derivative η̇(0) of η at t = 0 exists. By Lemma 2.6,
g is a closed subset, hence the limit

η̇(0) = lim
t→0

η(t)−η(0)
t

belongs to g. Let us compute it. First of all, since γ(t)−1 γ(t) = e for all t ∈ R and γ(0) = e, by
differentiating, we get

0 =
d
dt

∣∣∣∣
t=0

(γ(t)−1
γ(t)) =

d
dt

∣∣∣∣
t=0

(γ(t)−1)+ γ̇(0).

From this, we conclude

d
dt

∣∣∣∣
t=0

η(t) =
(

d
dt

∣∣∣∣
t=0

γ(t)
)

yγ(0)−1 + γ(0)y
(

d
dt

∣∣∣∣
t=0

γ(t)−1
)
= xy−yx,

which shows that [x,y]g ∈ g.
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Finally, let us recall that the definition of tangent space in the general context of differentiable
manifolds is given in terms of derivations as follows. For any g ∈ G, the tangent space TgG at g is
the vector space of all possible derivations at g; that is, the space of all linear maps Xg : C ∞(G)→R
on smooth functions on G which satisfy the Leibniz rule

Xg( f1 f2) = Xg( f1) f2(g)+ f1(g)Xg( f2).

It is not hard to see that the tangent space at any point can be identified with the space of its
geometric tangent vectors; in particular we have the following identification.

Lemma 2.10. If G is a matrix Lie group, then TeG' g.

Proof. The isomorphism between g and TeG is defined as follows: if γ̇(0) ∈ g, then we associate
the derivation

Xe : f 7→ d
dt

∣∣∣∣
t=0

f ◦ γ(t).

In coordinates, if γ̇(0) = x, where x = (xi, j)
n
i, j=1 ∈Mat(n,R), then the associated derivation is

Xe( f ) = ∑
n
i, j=1 xi, j∂i, j f (e), where ∂i, j is the partial derivative with respect to the (i, j)-coordinate.

It is an easy exercise to verify that this map is indeed a linear isomoprhism, for details see, e.g., [13,
Proposition 3.2].

2.2 The Lie algebra of a Lie group

2.2.1 Left-invariant vector fields

Let G be a Lie group, and let F : G→ G be a smooth map. The differential DF of F is a smooth
map on the tangent bundle T G of G defined as follows: the differential DF(g) at g ∈ G is a linear
map from the tangent space TgG at g to the tangent space TF(g)G at F(g) which sends a derivation
Xg ∈ TgG to the derivation DF(g)Xg ∈ TF(g)G given by

[DF(g)Xg]( f ) = Xg( f ◦F).

The reader can check that DF(g)Xg is indeed a derivation (namely, it is a linear map on C ∞(G)
which satisfies the Leibniz rule).

If G is a matrix Lie group, then we can define the differential DF of F in terms of geometric
tangent vectors as well, following Lemma 2.10. Let x = γ̇(0) ∈ g be a geometric tangent vector at
the identity. We define

DF(e)x :=
d
dt

∣∣∣∣
t=0

F ◦ γ(t),

which is a geometric tangent vector at F(e) ∈ G.
Using smooth maps, we can therefore “move” tangent vectors around G. Recall that, for any

g ∈ G, the left-multiplication map Lg : h 7→ gh is smooth. Then, for any element x ∈ g we can
associate a tangent vector at any other point g by the aid of the differential of Lg at e. In other
words, we can define a vector field X on G by setting

Xg := DLg(e)Xe, for all g ∈ G, (2.3)

where, again, Xe ∈ TeG is the derivation associated to x according to Lemma 2.10. Let us express
this in coordinates. If x = γ̇(0) ∈ g, by Taylor’s Theorem we can write

γ(t) = e+ tx+ tR(t),
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where t 7→ R(t) ∈Mat(n,R) is a smooth map and R(t)→ 0 as t→ 0. Then

DLg(e)x =
d
dt

∣∣∣∣
t=0

Lg ◦ γ(t) =
d
dt

∣∣∣∣
t=0

(g+ tgx+ tgR(t)) = gx ∈Mat(n,R). (2.4)

Proposition 2.11. For any x = Xe ∈ TeG, the associated vector field X defined by (2.3) is smooth
and left-invariant, namely for all g ∈ G we have DL(g)X = X.

Proof. In coordinates, the fact that X is smooth comes from expression (2.4). More formally, in
order to check that X is smooth it is enough to show that X f : G→ R is a smooth function for any
f ∈ C ∞(G). Let γ(t) be a smooth curve such that γ̇(0) = Xe, and fix any such f ∈ C ∞(G). Define
F(g, t) := f (gγ(t)); then it is clear that F : G×R→R is a smooth function, and so is its derivative
∂

∂ t F(g,0) at t = 0. Thus,

Xg f = (DLg(e)Xe)( f ) = Xe( f ◦Lg) =
d
dt

∣∣∣∣
t=0

f ◦Lg(γ(t)) =
d
dt

∣∣∣∣
t=0

f (gγ(t)) =
∂

∂ t
F(g,0)

is a smooth function in g, which proves that X is smooth.
The fact that X is left-invariant is an easy exercise that we leave to the reader.

So far, we have seen that in a matrix Lie group G we can identify the tangent space at the
identity with the space of geometric tangent vectors g⊂Mat(n,R). Moreover, given any element
Xe ∈ TeG, we can define a smooth vector field X on G which is left-invariant.

Definition 2.12. Let G be a Lie group. The vector space of all smooth, left-invariant vector fields

Lie(G) := {X : G→ T G : X is smooth and DLgX = X for all g ∈ G}

is called the Lie algebra of G.

The use of the word “algebra” will become clear later on. The following result should come as
no surprise.

Lemma 2.13. The evaluation at the identity map ev: Lie(G)→ TeG defined by ev(X) = Xe is a
linear isomorphism.

Proof. It immediately follows from the definition that ev is linear. If ev(X) = Xe = 0, then for
every g ∈ G we have Xg = DLg(e)0 = 0, which implies X = 0. This shows that ev is injective.

Let now Xe ∈ TeG, and define a vector field X as in (2.3). By Proposition 2.11, X is smooth
and left-invariant, hence X ∈ Lie(G). By construction, ev(X) = Xe, which proves surjectivity and
completes the proof.

In the following, we will often identify x ∈ g, Xe ∈ TeG and X ∈ Lie(G). We now know that
(geometric) tangent vectors at the identity are in 1-to-1 correspondence with smooth left-invariant
vector fields. Each of the latters generate a smooth flow on G; more precisely, if X ∈ Lie(G), there
exists a unique ϕX = {ϕX

t }t∈I (which is defined at least on small intervals I containing 0) whose
infinitesimal generator is X , namely such that

Xg f =
d
dt

∣∣∣∣
t=0

f ◦ϕ
X
t (g), for all g ∈ G,

where f is any smooth function. The goal now is to find an expression for ϕX and show that it is
defined for all t ∈ R.
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2.2.2 The exponential map

On the space of matrices Mat(n,R), we introduce the following map

exp: Mat(n,R)→Mat(n,R)

x 7→
∞

∑
k=0

1
k!

xk,
(2.5)

called the matrix exponential.

Proposition 2.14. The matrix exponential is well-defined and satisfies the following properties:

1. exp(x)exp(y) = exp(x+y) if x and y commute,

2. exp(x) ∈ GL(n,R) and exp(x)−1 = exp(−x),

3. γx(t) := exp(tx) is a smooth curve in GL(n,R) whose geometric tangent vector at e is x,

4. exp(Ad(g)x) = exp(g−1xg) = g−1 exp(x)g for all g ∈ GL(n,R),

5. det(exp(x)) = etr(x),

6. exp: Mat(n,R)→ GL(n,R) is a smooth map.

Proof. In oder to show that exp is well-defined, we prove that for any x ∈Mat(n,R), the series
∑

∞
k=0

1
k! x

k converges. For any submultiplicative norm ‖·‖, we have

∞

∑
k=0

∥∥∥∥ 1
k!

xk
∥∥∥∥≤ ∞

∑
k=0

1
k!
‖x‖k < ∞,

that is, ∑
∞
k=0

1
k! x

k is absolutely convergent. Since Mat(n,R) is complete, this shows that the series
is convergent. We now verify the other claims.

1. if x and y commute, we have

exp(x)exp(y) =

(
∞

∑
k=0

1
k!

xk

)(
∞

∑
l=0

1
l!

yl

)
=

∞

∑
k,l=0

1
k!l!

xkyl =
∞

∑
k=0

k

∑
l=0

1
l!(k− l)!

xlyk−l

=
∞

∑
k=0

1
k!

k

∑
l=0

(
k
l

)
xlyk−l =

∞

∑
k=0

1
k!
(x+y)k = exp(x+y).

2. Take y =−x in part 1, and notice that exp(0) = e.

3. We proved that ∑
∞
k=0

1
k! x

k is absolutely convergent, so the following equalities hold

γ̇x(t) =
d
dt

exp(tx) =
∞

∑
k=0

1
k!

d
dt
(tx)k =

∞

∑
k=0

1
(k−1)!

xktk−1 = x
∞

∑
k=0

1
k!
(tx)k = xγx(t).

Hence γ̇x(0) = x.

4. For any g ∈ GL(n,R),

exp(g−1xg) =
∞

∑
k=0

1
k!
(g−1xg)k =

∞

∑
k=0

1
k!
(g−1xkg) = g−1

(
∞

∑
k=0

1
k!

xk

)
g = g−1 exp(x)g.
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5. If x ∈ Mat(n,R) is an upper triangular matrix, it is easy to see that the diagonal entries
of exp(x) are the exponentials of the diagonal entries of x; in particular the equality
det(exp(x)) = etr(x) holds for these matrices. If x is arbitrary, write x = g−1yg in Jordan
normal form and apply part 4.

6. The fact that exp is a smooth map follows from the rules of differentiations for series of
functions.

For any x ∈ g and t ∈ R let us define

ϕ
x
t (g) = gexp(tx). (2.6)

Notice that, a priori, ϕx
t : G→ GL(n,R). We shall now see that ϕx

t has values in G and defined the
integral curves of the vector field X ∈ Lie(G).

Proposition 2.15. The map ϕx : R×G→ GL(n,R) defined by ϕx(t,g) = ϕx
t (g) as in (2.6) is a

smooth flow with infinitesimal generator X ∈ Lie(G), where Xe = x.

Proof. The fact that ϕx is a smooth map follows from Proposition 2.14-(6). For t = 0, we have
ϕx

0 (g) = gexp(0) = g and for any t,s ∈ R we have

ϕ
x
t+s(g) = gexp((t + s)x) = gexp(tx+ sx) = gexp(tx)exp(sx) = ϕ

x
s ◦ϕ

x
t (g),

where we have used Proposition 2.14-(1). Hence, ϕx is a smooth flow.
We now check that its infinitesimal generator is X ∈ Lie(G). By Proposition 2.14-(3), we know

that the tangent vector at the identity associated to ϕx is x = Xe. Then, for any smooth function f
and any g ∈ G we have

d
dt

∣∣∣∣
t=0

f ◦ϕ
x
t (g) =

d
dt

∣∣∣∣
t=0

f (gexp(tx)) =
d
dt

∣∣∣∣
t=0

( f ◦Lg)(exp(tx)) = [DLg(e)Xe]( f ) = Xg f ,

which proves that the infinitesimal generator is X .

Corollary 2.16. We have exp: g→ G. Moreover, exp is a smooth diffeomorphism between a
neighbourhood of 0 ∈ g and a neighbourhood of e ∈ G.

Proof. Let X ∈ g= Lie(G). By the standard theory of ODEs, there exists a unique smooth solution
γ : I → G to the equation γ̇(t) = X(γ(t)) with the initial condition γ(0) = e. The solution γ is
a smooth curve in G defined on an interval I = (−ε,ε) for some ε > 0. By Proposition 2.15,
the smooth curve t 7→ ϕx

t (e) = exp(tx) satisfies the ODE γ̇ = X(γ), hence exp(tx) ∈ G for all
t ∈ (−ε,ε). Let N ∈ Z be such that |N|−1 < ε . By Proposition 2.14-(1), we conclude

exp(x) = exp(N−1x)N ∈ G,

since G is a group. This shows that exp maps g into G.
Let us show it is a local diffeomorphism. By the Inverse Function Theorem, it is enough to

show that the differential Dexp(0) from T0g' g to TeG = g is invertible. Indeed, for any x ∈ g we
have Dexp(0)x = d

dt |t=0 exp(tx) = x; that is, Dexp(0) is the identity. This completes the proof.

We have then shown that for any x ∈ g there exists a smooth flow ϕx on G defined for all
times t ∈ R given by the action by multiplication on the right by the 1-parameter subgroup
{exp(tx) : t ∈ R} generated by the left-invariant vector field X associated to x.
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Definition 2.17. For any x ∈ g\{0}, the flow {ϕx
t }t∈R given by ϕx

t (g) = gexp(tx) is called the
homogeneous flow generated by x. We will write interchangeably ϕx

t and ϕX
t .

For example, we can check that

exp(tu) =
(

1 t
0 1

)
, exp(ta) =

(
et/2 0
0 e−t/2

)
, exp(tv) =

(
1 0
t 1

)
, for all t ∈ R.

As we saw, exp is a diffeomorphism between a neighbourhood of 0 ∈ g and e ∈ G, but in general
exp is neither injective nor surjective.

Exercise 2.18. (a) Show that exp: h→ Heis is a global diffeomorphism.

(b∗) Show that exp: sl(2,R)→ SL(2,R) is neither injective nor surjective: find countably many
xn ∈ sl(2,R) such that exp(xn) = e and find a matrix g ∈ SL(2,R) which cannot be written
as exp(x) for x ∈ sl(2,R).

2.2.3 Adjoints, Lie derivatives and Lie brackets

Let G be a matrix Lie group and g its Lie algebra; call k = dimg. Let us recall, from Lemma
2.9, that, for all g ∈ G, we can define a linear map Ad(g) : g→ g called the Adjoint of g by
Ad(g)x = g−1xg. The map

Ad: G→ GL(g)' GL(k,R)
g 7→ Ad(g)

(2.7)

is a group anti-homomorphism, since

Ad(gh)x = (gh)−1x(gh) = h−1(g−1xg)h = (Ad(h)◦Ad(g))x,

for all x ∈ g. We call Ad the Adjoint representation of G.
Let us comment again on its dynamical significance. Let x∈ g\{0}, and let ϕx be the associated

flow. We want to study the divergence of nearby points under ϕx. By Proposition 2.14-(6), the
exponential map is a smooth diffeomorphism when restricted to a sufficiently small neighbourhood
U of 0 ∈ g. Let g ∈ exp(U) ⊂ G be a point sufficiently close to the identity e, so that we can
write g = exp(z) for some z ∈ U. If we want to move between the points ϕx

t (e) = exp(tx) and
ϕx

t (g) = gexp(tx), we need to multiply by

exp(−tx)gexp(tx) = exp(−tx)exp(z)exp(tx) = exp(exp(−tx)zexp(tx)) = exp(Ad(exp(tx))z),

where we used Proposition 2.14-(4). In other words, the exponential of the Adjoint tells us how
nearby points diverge.

Let us be more precise. Let us fix t ∈ R and consider the time-t map ϕx
t : G→ G. We compute

its differential Dϕx
t acting on tangent vectors. Fix g ∈ G and Z ∈ Lie(G), which we identify with

z ∈ g as usual. In order to compute the image [Dϕx
t (Z)]g of the vector field Z at the point g, we fix

an arbitrary smooth function f on G so that

[Dϕ
x
t (Z)]g( f ) = Zϕx

−t(g)( f ◦ϕ
x
t ) =

d
ds

∣∣∣∣
s=0

( f ◦ϕ
x
t )(ϕ

x
−t(g)exp(sz))

=
d
ds

∣∣∣∣
s=0

f (gexp(−tx)exp(sz)exp(tx)) =
d
ds

∣∣∣∣
s=0

f
(
gexp[sAd(exp(tx))z]

)
= [Ad(exp(tx))z]g( f ),
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where, in the last equality, we have used Proposition 2.14-(4). Therefore, we conclude

Dϕ
x
t (Z) = Ad(exp(tx))z, (2.8)

that is, the action of Ad(exp(tx)) on g describes how tangent vectors evolve under ϕx.

Exercise 2.19. Let B := {u,a,v} the basis of sl(2,R) we introduced in §2.1.2. For all x ∈B and
any given t ∈ R, compute explicitly the matrix associated to Dϕx

t with respect to B. What is the
difference between a and the other two elements of B?

For all x ∈ g, let us call adx := [x, ·]g the linear map adx : g→ g. It is called the adjoint
endomorphism of x, and it can be expressed by a matrix ad ∈Mat(k,R). Clearly, this matrix is not
invertible. From the proof of Lemma 2.9, it follows that

d
dt

∣∣∣∣
t=0

Ad(exp(−tx)) = adx, (2.9)

from which one deduces

Ad(exp(tx)) = exp(t adx) =
∞

∑
k=0

tk

k!
adk

x.

While Ad(exp(tx)) describes the divergence of left-invariant vector fields (and nearby points) under
the flow ϕx, the map adx = LX describes its infinitesimal version, that is how vector fields diverge
“infinitesimally”.

Again, let us be more precise. Let us consider two flows ϕX
t and ϕY

t generated by the vector
fields X ,Y ∈ Lie(G). If ϕX

t and ϕY
t commute, that is if ϕX

t ◦ϕY
s = ϕY

s ◦ϕX
t for all t,s ∈ R, then

for any fixed t ∈ R, the differential DϕX
t of the smooth map ϕX

t maps the vector field Y into itself.
If the two flows do not commute, then DϕX

t maps Y smoothly into another smooth vector field
Z = Z(t). The Lie derivative describes the “infinitesimal change” of Y when moved by DϕX

t . More
precisely, the Lie derivative LX(Y ) of Y with respect to X at g ∈ G is defined by

LX(Y ) :=
d
dt

∣∣∣∣
t=0

Dϕ
X
−t(Y ) = lim

t→0

DϕX
−t(Y )−Y

t
.

The reader might be familiar with the formula

LX(Y ) = XY −Y X ,

we now show that the Lie derivative coincides with the bracket operation we defined in §2.1.2.

Proposition 2.20. Let x,y ∈ g, identified with X ,Y ∈ Lie(G). Then,

LX(Y ) = [x,y]g,

which is called the Lie bracket of x and y.

Proof. The claim follows immediately from (2.8) and (2.9), since

LX(Y ) =
d
dt

∣∣∣∣
t=0

Dϕ
X
−t(Y ) =

d
dt

∣∣∣∣
t=0

Ad(exp(−tx))y = adx(y) = [x,y]g.

Therefore, the geometric interpretation of the Lie bracket [x,y]g is to describe the infinitesimal
distortion of the left-invariant vector field Y = y under the action of the flow generated by X = x.
The Lie derivative (the Lie bracket) makes the space Lie(G) = g in an algebra.

Recall that, by definition, an ideal k of g is a vector subspace with the property that [k,g]g ⊂ k.

Definition 2.21. A Lie algebra g is simple if has no non-trivial ideals, namely if k is an ideal of g,
then k= g or k= {0}. A matrix Lie group G is simple if its lie algebra g is simple.

Exercise 2.22. Show that SL(2,R) is simple.
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2.3 Haar, Killing, Casimir

2.3.1 The Haar measure

Using the differential of the left-multiplication maps we can not only define vector fields starting
from a single vector at the identity, but we can also construct a measure on G starting from “a
determinant” on g. This measure will be one of the fundamental objects of this course. Let us see
how to do this.

Let V be a k-dimensional real vector space. It is a standard fact from linear algebra that there
exists a k-multilinear alternating form on V which is unique up to scalar multiplication; that is,
the space ∧kV ∗ is one dimensional. In order to explicilty write one of such multilinear alternating
forms ω , one can do the following: choose a basis {v1, . . . ,vk} of V and identify V with Rk by
means of this basis (i.e., identify w = a1v1 + · · ·+ akvk with (a1, . . . ,ak) ∈ Rk). Then, for any k
vectors w(1), . . . ,w(k), with w( j) = ∑i a( j)

i vi, consider the matrix W whose j-th row is (a( j)
1 , . . . ,a( j)

k ).
Associated to this choice of basis, we can define ω by

ω(w(1), . . . ,w(k)) = detW.

A different choice of basis would have the effect of multiplying ω by the determinant of the matrix
expressing the change of basis; in particular all possible multilinear alternating forms are multiples
of each other.

Let us now turn to matrix Lie groups. Let k be the dimension of g, and fix a basis {x1, . . . ,xk}
of g. Let ωe be the associated multilinear alternating form on g' TeG. Using the left-multiplication
maps Lg, we can define a multilinear alternating form ωg on the tangent space of any other point
g ∈ G by pull-back, namely

ωg(X
(1)
g , . . . ,X (k)

g ) := ωe(DLg−1(g)X (1)
g , . . . ,DLg−1(g)X (k)

g ) for any X (1)
g , . . . ,X (k)

g ∈ TgG.

Notice that, indeed, since Lg−1(g) = e, its differential DLg−1(g) maps TgG to TeG.
In other words, from any choice of basis on g, we have defined a k-differential form; in formal

terms, a section of the vector bundle ∧kT ∗G→ G. From a k-differential form ω , we obtain a
positive measure µ by taking its absolute value, dµ = |ω|.

Concretely, we fix a basis X (1)
e , . . . ,X (k)

e of TeG. Using the differentials of Lg, we obtain vector
fields X (1), . . . ,X (k) ∈ Lie(G) by X ( j)

g = DLg(e)X
( j)
e . Then, we take their dual dX ( j): these are

differential 1-forms defined by saying that for all g ∈ G, we have dX ( j)
g (X (i)

g ) = δi, j (i.e., 1 if i = j
and 0 otherwise). We define the measure µ by saying that for all continuous functions f : G→ R,∫

G
f (g)dµ(g) =

∫
G

f (g)dX (1)
g · · ·dX (k)

g .

With a little extra effort, we can complete the proof of the following important result.

Theorem 2.23. Let G be a matrix Lie group. There exists a smooth measure µ on G which is
invariant by all left-multiplication maps, namely for all continuous functions f : G→ R and for all
h ∈ G we have ∫

G
f (hg)dµ(g) =

∫
G

f (g)dµ(g).

This measure µ is unique up to scalar and is called the (left) Haar measure on G.

Proof. Let us consider a measure µ constructed as above. The fact that µ is a smooth measure
is a consequence of Proposition 2.11, since the cotangent vector fields dX ( j) are smooth. Let us
verify that µ = L∗gµ . First of all, we claim that the pullback (Lg)

∗(dX (i)) of dX (i) is again dX (i)
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for all i = 1, . . . ,k. In order to show this, it is enough to show that for all fixed h ∈ G we have
[(Lg)

∗(dX (i))]h(X
( j)
h ) = δi, j, by the definition of dX (i). Indeed, we have that

[(Lg)
∗(dX (i))]h(X

( j)
h ) = dX (i)

Lg(h)
(DLg(X

( j)
h )) = dX (i)

gh (X
( j)
gh ) = δi, j,

hence our claim is proved.
Now, for any continuous function f : G→ R, by the change of variable formula, we have∫

G
f ◦Lh dµ =

∫
Lh(G)

f (Lh)
∗(dX (1) · · ·dX (k)) =

∫
Lh(G)

f [(Lh)
∗(dX (1))] · · · [(Lh)

∗(dX (k))]

=
∫

hG
f dX (1) · · ·dX (k) =

∫
G

f dµ.

This completes the proof of the existence of a measure as in the statement of the theorem.
Let us verify the uniqueness claim. The idea is that a left-invariant differential k-form is

uniquely determined by its restriction to TeG, and, by the previous discussion, all multilinear
alternating forms on TeG are multiples of each other. Formally, let ν be another smooth measure
as in the statement of the theorem. Then, ν is defined by integrating a smooth k-differential
form. In particular, there exists a smooth function f : G→ R≥0 such that for all g ∈ G we have
dν(g) = f (g)dX (1) · · ·dX (k). By invariance under Lh for all h ∈ G, we deduce that f must be
constant. This proves the uniqueness claim and hence completes the proof.

The important point to remember is that on any matrix Lie group, up to a normalization factor,
there is a unique smooth measure that is invariant by all left translations g 7→ hg. We will come
back to the case of SL(2,R) in Chapter 4. In the case of the Heisenberg group, the Haar measure is
actually the Lebesgue measure on R3, as the next exercise shows.

Exercise 2.24. Let µ denote the Haar measure on Heis, normalized so that

µ


1 x z

0 1 y
0 0 1

 : x,y,z ∈ [0,1]


= 1.

For any function f : Heis→ R and any g =
( 1 x z

0 1 y
0 0 1

)
∈ Heis, write f (g) = f (x,y,z). Show that for

any continuous function f : Heis→ R we have∫
Heis

f (g)dµ(g) =
∫
R3

f (x,y,z)dx dy dz.

In other words, µ coincides with the Lebesgue measure on R3.

2.3.2 The Killing form

We can define a symmetric bilinear form on g as follows. Recall that, for all x ∈ g, its adjoint is
given by adx = [x, ·]g ∈Mat(k,R), where k = dimg.

Definition 2.25. The Killing form B is a bilinear symmetric form on g defined by

B(x,y) := tr(adx ◦ady), for all x,y ∈ g.

The fact that B is bilinear follows from the linearity of the Lie bracket adax+by = [ax+by, ·]g =
a[x, ·]g+b[y, ·]g = aadx +bady, as the reader can easily check. The symmetry of B follows from
the properties of the trace: for any matrices A,B we have tr(AB) = tr(BA).

The Killing form is Ad-invariant, as the next lemma shows.
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Lemma 2.26. For all g ∈ G, we have

B(Ad(g)x,Ad(g)y) = B(x,y), for all x,y ∈ g.

Proof. We first claim that, for all g ∈ G and x ∈ g, we have

adAd(g)x = Ad(g)◦adx ◦Ad(g)−1.

Indeed, let y ∈ g. Straightforward computations give us

adAd(g)x(y) = [Ad(g)x,y]g = g−1xgy−yg−1xg = g−1(xgyg−1−gyg−1x)g

= Ad(g)(xAd(g−1)y−Ad(g−1)yx) = (Ad(g)◦adx ◦Ad(g)−1)(y),

which proves our claim. Then,

B(Ad(g)x,Ad(g)y) = tr(adAd(g)x ◦adAd(g)y)

= tr
(
(Ad(g)◦adx ◦Ad(g)−1)◦ (Ad(g)◦ady ◦Ad(g)−1)

)
= tr(Ad(g)◦adx ◦ady ◦Ad(g)−1)

= tr(adx ◦ady) = B(x,y),

where we used the fact that the trace is invariant under conjugation.

Let us compute the Killing form in the case of sl(2,R). Let us fix the usual basis {u,a,v} as in
§2.1.2. Then, using the computations (2.1), we can write

adu =

0 −1 0
0 0 2
0 0 0

 , ada =

1 0 0
0 0 0
0 0 −1

 , adv =

 0 0 0
−2 0 0
0 1 0

 .

In order to compute the Killing form, it is enough to compute six matrices, for example ad2
u,ad

2
a,ad

2
v,

and adu ◦ada,ada ◦adv,adu ◦adv, and look at their traces. In matrix form, we get

B(x,y) = xT

0 0 4
0 2 0
4 0 0

y (2.10)

where T denotes the transpose. We conclude that the Killing form B on sl(2,R) is non-degenerate
and has signature (2,1). From this, we can prove an important geometrical fact that links the
algebraic properties of SL(2,R) to hyperbolic geometry.

Proposition 2.27. Let H be the hyperboloid model of the hyperbolic plane, that is the set

H := {x = (x1,x2,x3) ∈ R3 : x1 > 0 and x2
1− x2

2− x2
3 = 1},

equipped with the hyperbolic distance

dH (x,y) := arcosh(x1y1− x2y2− x3y3).

The group
PSL(2,R) = SL(2,R)/{±e}

acts on H by hyperbolic isometries.
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Proof. We start by diagonalizing the Killing form, namely we can find positive constants a1,a2,a3
such that the Killing form with respect to the basis {a1(u−v),a2a,a3(u+v)} can be expressed as

B(x,y) =−x1y1 + x2y2 + x3y3.

By Lemma 2.26, since Ad(g) preserves B, we have that Ad(g) maps the set of vectors x ∈ R3

which satisfy B(x,x) = −1 into itself. Moreover, one can verify by hand that if x1 > 0, then
the first coordinate of Ad(g)x also is positive. Therefore, Ad(g) maps H = {x ∈ R3 : B(x,x) =
−1 and x1 > 0} into itself. Again by Lemma 2.26, Ad(g) is an isometry with respect to dH .

We have shown that
Ad: SL(2,R)→ O(2,1)

is a smooth homomorphism into the orthogonal group of signature (2,1). It remains to show that its
kernel is {±e}. Clearly, −e ∈ ker(Ad), so we need to verify the other inclusion. Let g =

(
a b
c d

)
∈

ker(Ad), then Ad(g)
(

0 1
0 0

)
=
(

0 1
0 0

)
implies d =±1 and c = 0, so that a =±1. Repeating the same

argument with
(

1 0
0 −1

)
shows that b = 0 and hence g =±e, which concludes the proof.

As we just saw, in the case of SL(2,R), the Killing form is non-degenerate. This is not always
the case.

Exercise 2.28. Show that the Killing form on Heis is identically zero, that is B(x,y) = 0 for all
x,y ∈ h.

Lie groups for which the Killing form is non-degenerate have a special name. Proposition 2.30
below, which we will not prove, gives some equivalent conditions.

Definition 2.29. A matrix Lie group G for which the Killing form on its Lie algebra g is non-
degenerate is called semisimple.

Proposition 2.30 (Cartan’s Criterion for semisimplicity). Let G be a matrix Lie group and g its Lie
algebra. The following are equivalent:

1. G is semisimple,

2. g is a direct sum of simple algebras,

3. g has no non-zero abelian ideals.

2.3.3 The Casimir operator

We conclude this section by introducing the Casimir operator, which will play a key role when we
discuss the quantitative ergodic properties of homogeneous flows on SL(2,R) in Chapter 7.

Recall that any element x ∈ g can be seen as a (left-invariant) vector field X = x ∈ Lie(G) on G,
and hence as a first order differential operator. The Casimir operator is a second order differential
operator on G, which, roughly speaking, plays the same role in the harmonic analysis on G that the
operator d2

dx2 on R does in the Fourier analysis in one variable.
Let G be a semisimple matrix Lie group, and let B be the Killing form. Let B = {x1, . . . ,xk}

be a basis of g. Since B is non-degenerate, we can construct the dual basis B̂ = {x̂1, . . . , x̂k} given
by the condition B(xi, x̂ j) = δi, j.

Definition 2.31. The Casimir operator � = �B associated to the basis B is the second order
differential operator on G given by

�=
k

∑
i=1

xi x̂i.
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The definition is actually independent of the choice of basis: the matrix expressing the change
of basis of the dual basis is the inverse transpose of the matrix expressing the change of the original
basis, and these cancel out when computing the Casimir in the new basis.

Let us compute the Casimir operator for SL(2,R). Since the choice of basis is irrelevant, we
continue working with {u,a,v}. From (2.10), it immediately follows that û = 1

4 v, â = 1
2 a, and

v̂ = 1
4 u, so that

�=
1
4

uv+
1
2

a2 +
1
4

vu.

The most important property of the Casimir operator, and the one we will use in this course, is
that it commutes with all the elements of Lie(G) = g.

Proposition 2.32. For every y ∈ g we have �y = y�.

Proof. We first show that for all x,y,z ∈ g we have

B(adx(y),z)+B(y,adx(z)) = 0. (2.11)

Indeed, from Lemma 2.26, for all t ∈ R we have

B(y,z) = B(Ad(exp(−tx))y,Ad(exp(−tx))z) .

Differentiating at t = 0, we get

0 =
d
dt

∣∣∣∣
t=0

B(Ad(exp(−tx))y,Ad(exp(−tx))z)

= B
(

d
dt

∣∣∣∣
t=0

Ad(exp(−tx))y,z
)
+B

(
y,

d
dt

∣∣∣∣
t=0

Ad(exp(−tx))z
)

= B(adx(y),z)+B(y,adx(z)),

where we used (2.9).
Let us now fix a basis {x1, . . . ,xk} and its dual {x̂1, . . . , x̂k}, and let y ∈ g. Let ci, j,di, j ∈ R be

such that

[y,xi]g =
k

∑
j=1

ci, jx j, and [y, x̂i]g =
k

∑
j=1

di, jx̂ j.

Thus,
B(ady(xi), x̂ j) = ci, j, and B(xi,ady(x̂ j)) = d j,i,

which, by (2.11), yields ci, j +d j,i = 0.
We conclude

[�,y] =
k

∑
i=1

xi x̂i y−yxi x̂i =
k

∑
i=1

xi [x̂i,y]− [y,xi] x̂i

=
k

∑
i, j=1

xi (−di, jx̂ j)−
k

∑
i, j=1

ci, jx jx̂i = 0,

hence the proof is complete.

Corollary 2.33. For every f ∈ C ∞(G) and for every x ∈ g\{0}, we have

(� f )◦ϕ
x
t =�( f ◦ϕ

x
t ), for all t ∈ R.
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Proof. By Proposition 2.32, we have

d
dt

∣∣∣∣
t=0

(� f )◦ϕ
x
t = x(� f ) =�(x f ) =�

(
d
dt

∣∣∣∣
t=0

f ◦ϕ
x
t

)
.

Integrating both sides with respect to t gives the result (notice that we can interchange the Casimir
with the integration since f is smooth and hence locally absolutely integrable).

One could prove a stronger result, namely that, up to normalization, the Casimir is the only
operator with such property, but this goes beyond the scope of this course.

2.4 Homogeneous spaces

We have defined homogeneous flows and we have a smooth measure on the group. At the moment,
we still do not know whether homogeneous flows preserve the Haar measure, but we also have
another issue to worry about. The problem we face now is that, in the examples we are interested
in, the group G has infinite measure. This is the same situations as for linear flows in Chapter 1:
Rn has infinite volume and the dynamics of the linear flows is not interesting, since every points
escapes to infinity. To have some recurrence, as we did in Chapter 1 by looking at linear flows on
tori, we want to quotient the group G by a discrete subgroup and study the homogeneous flows on
these finite-volume quotients of G.

2.4.1 Discrete subgroups

Let us start with an important observation. In the same way as we did for both tangent vectors
and for multilinear alternating forms, we can “move” inner products from the tangent space at the
identity to the tangent space at any other point using left-multiplication maps. More precisely, let
us fix a basis B = {x1, . . . ,xk} of g, and let us define an inner product 〈·, ·〉g on g by declaring that
B is orthonormal and extending it by linearity. For any g ∈ G, we can define an inner product on
the tangent space TgG at g by

〈X ,Y 〉TgG = 〈DLg−1(g)X ,DLg−1(g)Y 〉g.

This definition gives us a metric on G, which allows us to compute the length `(γ) of smooth curves
γ : [a,b]→ G by

`(γ) =
∫ b

a

√
〈γ̇(t), γ̇(t)〉Tγ(t)G dt.

Since the metric is left-invariant by construction (as in the case of vector fields and of multilinear
alternating forms), it satisfies `(gγ) = `(γ) for all g ∈ G. The resulting distance dG on G

dG(g,h) = inf{`(γ) : γ is a smooth curve from g to h}

is left-invariant as well, in other words

dG(g1,g2) = dG(hg1,hg2), for all h ∈ G.

At this point, the metric dG depends on the choice of basis, but this will not be important for what
follows.

Remark 2.34. 1. If the Lie group G is not connected, then the distance between two points in
different connected components is infinite. This will not be a problem for us since we will
only consider connected Lie groups.
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2. It is not hard to see that the topology induced by any left-invariant metric is equivalent to the
Euclidean topology on GL(n,R)⊂ Rn2

. For a proof of this fact, the reader can refer to [4,
Lemma 9.12].

Let Γ < G be a discrete subgroup of G, that is, a subgroup consisting of isolated points. Then,
Γ acts on G by left-multiplications, and all these multiplication maps are isometries, since dG is
left-invariant. With this in mind, we can prove the following lemma.

Lemma 2.35. Let Γ be a discrete subgroup of a matrix Lie group G. Then, Γ acts properly
discontinuously on G. In other words, for every compact set K ⊂G, the set {h ∈ Γ : hK∩K 6= /0} is
finite.

Proof. Assume that this is not the case, namely there exists a compact set K ⊂ G and an infinite
set of elements hi ∈ Γ such that hiK∩K 6= /0. Therefore, for every p ∈ K, we have dG(p,hi p)≤ R,
where R is twice the diameter of K. This implies that the isometries Lhi are equibounded on K.
Since they are clearly equicontinous (they are isometries!), by the Ascoli-Arzelà Theorem, there is
a subsequence hi j ∈ Γ such that the maps Lhi j

: g 7→ hi j g converge uniformly on K. Let us consider

the sequence of elements ` j = h−1
i j

hi j+1 ∈ Γ. The elements hi are assumed to be all distinct, so ` j 6= e.
Moreover, the sequence of isometries L` j converges uniformly on K to the identity. By Remark
2.34, the right-multiplication map Rg−1 is continuous with respect to dG; hence, the sequence ` j→ e.
This violates the assumptions that Γ is discrete, hence proves the lemma.

2.4.2 Quotients

Let Γ < G be a discrete subgroup of G, and let M = Γ\G the quotient space. From Lemma 2.35,
we can deduce that M is a smooth manifold.

Lemma 2.36. If Γ < G is discrete, then M = Γ\G is a smooth manifold. Moreover, if Γ is normal
in G, then M = G/Γ is a Lie group.

Proof. By Lemma 2.35, the quotient map π : G→M is a covering map; in other words, for every
p = Γg ∈M there exists an open neighbourhood Up of p such that π−1(Up) is a disjoint union of
open neighbourhoods Ui of points in gi ∈ π−1{p}. We can define charts on M as follows. For
every p ∈M, choose g ∈ G and open neighbourhoods Up of p and Ug of g such that π(g) = p and
π : Ug →Up is a homeomorphism. The atlas on M is defined by composing the local sections
π−1 : Up→Ug with the charts of G. The transition maps are given by the left multiplication maps
Lh for h ∈ Γ, which are smooth since G is a Lie group. This proves the first part.

If Γ is a normal subgroup, then the quotient inherits a group structure which is clearly smooth
in the charts we defined.

Corollary 2.37. The group
PSL(2,R) = SL(2,R)/{±e}

is a Lie group. Its Lie algebra coincides with the Lie algebra of SL(2,R).

Proof. We apply the previous lemma with Γ = {±e} = Z(SL(2,R)), which is the centre of
SL(2,R). Since −e acts properly discontinuously on SL(2,R), the tangent space at the iden-
tity e is the same, hence Lie(PSL(2,R)) = sl(2,R).

Once we fixed a left-invariant distance and a Haar measure on G, we obtain a well-defined
distance and measure on M as well by composing them with local sections π

−1
i : M→ G. The

definitions are well-posed, since they do not depend on the choice of local section, by the left-
invariance properties of the distance and the Haar measure. Therefore, M is a metric and measured
space which is locally isometric to G.
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Definition 2.38. 1. The quotients M = Γ\G of matrix Lie groups by discrete subgroups Γ are
called homogeneous manifolds.

2. A discrete subgroup Γ such that the quotient M has finite volume with respect to a (equiva-
lently, any) Haar measure is called a lattice. A discrete subgroup Γ such that the quotient M
is compact is called a uniform or co-compact lattice.

We will see examples of lattices in the next chapters. Notice that any uniform lattice is also a
lattice. The converse is not true, as we will see later in this course.

Exercise 2.39. (∗) Let M = Γ\G be a compact homogeneous manifold, and let µ be the probability
measure on M induced by the Haar measure on G. Let X ∈ Lie(G), seen as a first order differential
operator (i.e., a derivation) on M. Show that for all f ∈ C ∞(M) we have∫

M
X f dµ = 0.

We conclude this chapter with the following simple but important observation. Let ϕv be the
homoegeneous flows on G defined by v ∈ g\{0}, and let M = Γ\G be a homogeneous manifold.
Since ϕv is obtained by multiplying on the right ϕv

t (g) = gexp(tv) and M consists of left cosets,
the flow (which, by a little abuse of notation, we denote with the same symbol)

ϕ
v : R×M→M, ϕ

v
t (Γg) = Γgexp(tv)

is well-defined and is called the homogeneous flow on M generated by v.
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Chapter 3

Heisenberg nilflows

In this chapter we will study homogeneous flows on quotients of the Heisenberg group and we will
look into a nice application to a problem in number theory. More advanced material on general
nilpotent Lie groups can be found in [2].

3.1 Heisenberg nilmanifolds

3.1.1 Preliminaries on the Heisenberg group

Let us recall that the Heisenberg group is the 3 dimensional matrix Lie group

Heis =


1 x z

0 1 y
0 0 1

 : x,y,z ∈ R

 .

Although it is not an Abelian group, it is not very far from it. Let us explain what we mean. Recall
that, for any group G, the commutator (or derived) subgroup G′ = [G,G] is the subgroup of G
generated by all elements of the form g−1h−1gh for g,h ∈G. It is not hard to see that G′ is a normal
subgroup of G and the quotient ab(G) := G/G′ is the largest Abelian quotient of G, which is called
the Abelianization of G. In particular, G is Abelian if and only if G′ = {e}, and hence ab(G) = G.

In our case, if g,h ∈ Heis with

g =

1 x z
0 1 y
0 0 1

 , h =

1 u w
0 1 v
0 0 1

 , then g−1h−1gh =

1 0 vx− yu
0 1 0
0 0 1

 .

It follows that the commutator subgroup is

Heis′ =


1 0 z

0 1 0
0 0 1

 : z ∈ R

= Z(Heis).

which coincides with the centre Z(Heis) of Heis. We conclude that ab(Heis) ' R2, where the
isomorphism is induced by

g =

1 x z
0 1 y
0 0 1

 7→ (x,y) ∈ R2,

whose kernel is exactly Z(Heis). From a geometrical point of view, this means that the Heisenberg
group is a connected and simply connected manifold, which can be expressed as a (non-trivial) line
bundle over R2 ' ab(Heis).
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Let us look at its Lie algebra h. From Exercise 2.7, we get that h is the 3 dimensional vector
space

h=


0 x z

0 0 y
0 0 0

 : x,y,z ∈ R

= span{e1,e2,e3},

where

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 , e3 =

0 0 1
0 0 0
0 0 0

 .

With the aid of the basis {e1,e2,e3}, we will from now on identify h with R3.
Notice that the centre z(h) of h, namely the set of vectors whose Lie bracket with any other

vector is zero, is span{e3}, which also coincides with the non-trivial ideal h′ = [h,h]h. Since
[h,h′]h = {0}, we say that h is a nilpotent Lie algebra of step 2.

3.1.2 The exponential coordinates

Recall that the exponential map exp maps h into Heis. Let v = (v1,v2,v3) ∈ h, and let us compute
its exponential. We have

exp(v) =
∞

∑
k=0

1
k!

vk = e+v+
1
2

v2 =

1 v1 v3 +
1
2 v1v2

0 1 v2
0 0 1

 , (3.1)

since vk = 0 for all k ≥ 3. We now prove the following simple but important result, which the
reader might have already proved by themselves in Exercise 2.18-(a).

Lemma 3.1. The exponential map is a global diffeomorphism between h and Heis.

Proof. From (3.1), it is easy to see that the map

log:

1 x z
0 1 y
0 0 1

 7→ (x,y,z− xy/2)

is the inverse of exp. Both exp and log are smooth since they are polynomial maps in coordinates.

From Lemma 3.1, it follows that we can define a new atlas on Heis consisting of a single chart
given by the exponential map. This new set of coordinates are called exponential coordinates. Let
us now compute how the matrix multiplication on Heis translates in exponential coordinates.

Lemma 3.2 (Baker-Campbell-Hausdorff Formula for the Heisenberg group). For any v,w ∈ h, we
have exp(v)exp(w) = exp(v∗w), where

v∗w = v+w+
1
2
[v,w]h.

Proof. Let v = (v1,v2,v3) and w = (w1,w2,w3). From (3.1) we get

exp(v)exp(w) =

1 v1 +w1 v3 +
1
2 v1v2 + v1w2 +w3 +

1
2 w1w2

0 1 v2 +w2
0 0 1

 .

Using the formula for log in Lemma 3.1, we conclude

v∗w = log(exp(v)exp(w)) = (v1 +w1,v2 +w2,v3 +w3 +(v1w2− v2w1)/2),

which proves the formula.
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It remains to find an expression for any given Haar measure on Heis in exponential coordinates.
In a similar way as the reader did in Exercise 2.24, we prove the following lemma.

Lemma 3.3. Let µ be a Haar measure on Heis. There exists λ > 0 such that µ = λ Leb on h. In
particular, we can identify (Heis, ·,µ) with (h,∗,λ Leb).

Proof. By Theorem 2.23, it is enough to show that Leb on h = R3 is invariant under all left-
multiplication maps. Fix v ∈ h, and let A⊂ h be a measurable set. If we denote Lv(x) = v∗x, we
need to show that Leb(LvA) = Leb(A). Applying the change of variable formula, we get

Leb(v∗A) =
∫

Lv(A)
dx =

∫
h

1lA ◦L−1
v (x)dx =

∫
h

1lA(x)dLv(x) =
∫

A
|detDLv(x)|dx.

From Lemma 3.2, the Jacobian matrix of Lv at x is

DLv(x) =

 1 0 0
0 1 0

−v2/2 v1/2 1

 ,

which implies that |detDLv(x)|= 1 and hence proves the invariance of Leb under Lv.

3.1.3 Lattices

By definition, a Heisenberg nilmanifold is a quotient M = Γ\Heis of Heis by a discrete subgroup
Γ. We are interested in the case where Γ is a lattice, namely when the quotient manifold M has
finite volume. By the definition of the push-forward measure on M, this is equivalent to asking
that a fundamental domain for M in Heis has finite volume. Given a lattice Γ, we choose the
normalization of the Haar (Lebesgue) measure µ on Heis so that (any fundamental domain for) M
has volume 1. By a little abuse of notation, we will use the letter µ to denote both the Haar measure
on Heis, which we identify with h, and the induced measure on M.

Let us classify all possible Heisenberg nilmanifolds of finite volume. The following exercise
will become useful in the proof.

Exercise 3.4. Show that the following linear transformations of h are group automorphisms:

• Fa,b : h→ h given by

Fa,b(x1,x2,x3) := (x1,x2,x3−ax1−bx2),

where a,b ∈ R;

• FA : h→ h given by

FA(x1,x2,x3) := (ax1 +bx2,cx1 +dx2,(detA)x3),

where A =
(

a b
c d

)
∈ GL(2,R) is an invertible matrix.

Proposition 3.5. Let Γ < Heis be a lattice. Up to a group automorphism, we have

Γ = ΓE := Ze1 ∗Ze2 ∗
1
E
Ze3 =


1 p r

E
0 1 q
0 0 1

 : p,q,r ∈ Z

 .

where E ≥ 1 is a positive integer.
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Proof. Let Γ < Heis = h be a lattice. We notice that Γ 6= {(0,0,0)}, since h has infinite Haar
measure. Let us call π : h→ Γ\h the canonical projection.

Assume that Γ⊂ Re3. Since Γ is a discrete subgroup of Re3, it follows that Γ = {(0,0,mz) :
m ∈ Z} for some z ∈ R\{0}. Then, the projection π is injective on the set R2× (0,z), which has
infinite Haar measure. This is in contradiction with the assumption that Γ is a lattice.

Since Γ is not contained in Re3, there exists v = (v1,v2,v3) ∈ Γ with v1v2 6= 0. Without loss of
generality, let us assume v2 6= 0. We can find a matrix A1 ∈ SL(2,R) that maps (v1,v2) to (0,1).
Thus, by Exercise 3.4, up to a group automorphism we can assume v = (0,1,v3) and, by the first
part of the same exercise, v = e2 ∈ Γ.

Let E be the subgroup of h given by E = Re2 ∗Re3 = {(0,y,z) : y,z ∈ R}, which is isomorphic
to R2, and let us assume that Γ ⊂ E. Since Γ is a discrete subgroup, there exists an ε > 0 such
that there are no elements of Γ in the set {(0,y,z) : y,z ∈ (0,ε)}. This implies that the projection
π is injective when restricted to the set {(x,y,z) : y,z ∈ (0,ε)}, which has infinite measure. The
contradiction with the lattice assumption implies that Γ is not fully contained in E.

Let w = (w1,w2,w3) ∈ Γ \E, so that w1 6= 0. Then, we can find A2 ∈ GL(2,R) that maps
(w1,w2) to (1,0) and fixes (0,1), so that, using both parts of Exercise 3.4, up to a group automor-
phism we can assume that e1,e2 ∈ Γ. Moreover, we also have that

e3 = e1 ∗ e2 ∗ (−e1)∗ (−e2) ∈ Γ.

Notice that Γ∩Re3 is a discrete subgroup of R= Re3 containing Ze3, hence Γ∩Re3 =
1
EZe3 for

some integer E ≥ 1. In particular, this proves

ΓE := Ze1 ∗Ze2 ∗
1
E
Ze3 ⊆ Γ.

Let us show the other inclusion. The Abelianization ab: h→ h/Z(h) = R2, in exponential co-
ordinates, is the projection onto the first two coordinates. The projection Γab = ab(Γ) of Γ is a
subgroup of R2 which contains Z2. We claim that the index [Z2 : Γab] (equivalently, the cardinality
of the set Γab∩ [0,1)2) is finite. Otherwise, there would exist a sequence vk = (xk,yk,zk) ∈ Γ such
that the projections ab(vk) = (xk,yk) are all distinct elements in [0,1)2. Thus, we could construct a
sequence of distinct elements

vk ∗ (−bzkce3) = (xk,yk,zk−bzkc) ∈ Γ∩ [0,1)3,

from which we could extract a converging subsequence. This contradicts the discreteness of Γ.
Therefore [Z2 : Γab]< ∞, which implies in particular that Γab has rank 2. Up to a change of basis
of R2, and hence using once more Exercise 3.4, up to a group automorphism we can assume that
Γab = Z2.

Let x = (x,y,z) ∈ Γ. Since ab(x) = (x,y) ∈ Γab = Z2, it follows that x,y ∈ Z, which yields

x∗ (−ye2)∗ (−xe1) = (0,0,z− xy/2) ∈ Γ∩Re3 =
1
E
Ze3.

This implies that z− xy/2 = m/E for some m ∈ Z. Therefore

x = (x,y,z) = (x,y,m/E + xy/2) = (xe1)∗ (ye2)∗
(m

E
e3

)
∈ Ze1 ∗Ze2 ∗

1
E
Ze3,

which proves the other inclusion and completes the proof.
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A consequence of Proposition 3.5 is that all Heisenberg nilmanifolds of finite volume are also
compact, that is to say that all lattices in Heis are uniform. This property holds for all nilpotent
matrix Lie groups, although we will see it does not hold in SL(2,R). For the rest of these notes, all
Heisenberg nilmanifolds are assumed to be compact. Then, up to a group automorphism, they are
of the form ΓE\Heis = ΓE\h for some integer E ≥ 1.

Corollary 3.6. Let M = Γ\h be a Heisenberg nilmanifold. Then, M is a circle bundle over T2 with
fibers parallel to e3.

Proof. By Proposition 3.5, up to an automorphism of Heis (that is, up to a change of coordinates),
we have that Γ = Ze1 ∗Ze2 ∗ 1

EZe3 = ΓE . Thus, ab(Γ) = Z2. It is immediate to check that ab
induces a well-defined map

ab: M = Γ\h→ T2

Γ(x,y,z) 7→ Jx,yK

which expresses M as a bundle over R/(E−1Z)→M ab−→ T2. Indeed, the preimage of any point
ab(p) ∈ T2 is a circle p∗ (se3), with s ∈ R/(E−1Z), which is homeomorphic to R/(E−1Z).

3.2 Ergodic properties of Heisenberg nilflows

A Heisenberg nilflow is a homogeneous flow on a Heisenberg nilmanifold. Let M = Γ\Heis and
let v ∈ Lie(Heis) = h, then the nilflow generated by v is the flow ϕv

t (p) = pexp(tv) where p ∈M.
In exponential coordinates, if v = (v1,v2,v3), we can write

ϕ
v
t (p) = p∗ tv = Γ(x+ tv1,y+ tv2,z+ tv3 + t(xv2− yv1)/2), where p = Γ(x,y,z). (3.2)

By Proposition 3.5, up to an automorphism of Heis, we have Γ = ΓE . In the following, just for
simplicity of notation, we will assume that E = 1; in other words we will consider the Heisenberg
nilmanifold

M = Γ1\h= {Γ(x,y,z) : x,y,z ∈ [0,1)}, Γ1 = Z∗Z∗Z.

By Lemma 3.3, we can fix a normalization of the Haar measure so that M has volume 1, so that the
smooth measure on M coincides with the Lebesgue volume of [0,1)3, which we denote by µ .

Let us verify that ϕv preserves µ . Indeed, as we did in Lemma 3.3, we check that, for all t ∈ R,
the Jacobian matrix

Dϕ
v
t (p) =

 1 0 0
0 1 0

tv2/2 −tv1/2 1


of ϕv

t at p has determinant 1. Thus, by the change of variable formula, it follows that ϕv
t preserves

the Lebesgue measure µ . Indeed, the same reasoning yields the following result.

Lemma 3.7. The Haar measure µ on M is right-invariant, namely for every continuous function
f : M→ C and for every x ∈ h we have∫

M
f (p∗x)dµ =

∫
M

f (p)dµ.

We now investigate the ergodic properties of ϕv with respect to the invariant measure µ .
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3.2.1 Mixing properties

We start from the strong chaotic properties, since it is quite easy to see that nilflows are never
weakly mixing. Actually, there is a clear obstruction to weak-mixing, coming from the Abelian
quotient of Heis.

Proposition 3.8. Let φ v
t denote the linear flow on T2 in direction v = (v1,v2) ∈ R2. Then, φ v

t is a
factor of ϕv

t ; that is, the following diagram

(M,µ)

ab
��

ϕv
t // (M,µ)

ab
��

(T2,Leb)
φ v

t // (T2,Leb)

commutes for every t ∈ R. In particular, ϕv
t is not weak-mixing.

Proof. The commutativity of the diagram is clear from Corollary 3.6 and (3.2). Let us show ϕv
t is

not weak-mixing.
For all (m,n) ∈ Z2 \{(0,0)}, we define f m,n on T2 by f m,n : Jx,yK 7→ e2πi(mx+ny). We showed

in Lemma 1.25 that f m,n is a non-constant eigenfunction of φ v
t with eigenvalue e2πitα , where

α = mv1 +nv2. Then, the function fm,n := f m,n ◦ ab is a non constant eigenfunction for ϕv; indeed

fm,n ◦ϕ
v
t = f m,n ◦φ

v
t ◦ ab = e2πitα f m,n ◦ ab = e2πitα fm,n.

This shows that ϕv
t is not weak-mixing.

Let ab : (M,µ)→ (T2,Leb) be the factor map as in the previous proposition. If we denote by
ab∗ : L2(T2)→ L2(M) the pull-back ab∗( f ) = f ◦ ab, we have an orthogonal decomposition

L2(M) = ab∗L2(T2)⊕L2
0(M), (3.3)

where L2
0(M) consists of all L2 functions on M whose integral along all circles parallel to e3 is zero,

namely

L2
0(M) =

{
f ∈ L2(M) :

∫ 1

0
f (p∗ se3)ds = 0 for all p ∈M

}
.

We leave as en exercise to the reader, Exercise 3.10 below, to establish the decomposition (3.3).
In the proof of Proposition 3.8 we showed that there exists a dense set of functions in ab∗L2(T2)

which are eigenfunctions for the nilflow. We now prove that, in the orthogonal complement L2
0(M),

typical nilflows are mixing. In some sense, this suggests that the toral factor of Proposition 3.8 is
the only obstruction to mixing.

Theorem 3.9. Let ϕv
t be a nilflow such either v1 or v2 is not zero. Then, for every f ,g ∈ L2

0(M) we
have

lim
t→∞
〈 f ◦ϕ

v
t ,g〉= 0.

Let us notice that all functions in L2
0(M) have zero integral, so that the result above indeed

shows the asymptotic decorrelations of the observables in L2
0(M) (i.e., mixing). Moreover, it is

clear that if both v1 and v2 are zero, the nilflow consists simply of parallel translations along the
fibers of the projection on T2, which is a periodic flow. Hence the assumption on v is necessary.

The proof of Theorem 3.9 is based on a “wrapping mechanism”: short segments in direction
e2 gets sheared along the circle fibers Te3 at linear speed (if v1 6= 0, otherwise one can consider
e1 instead), so that they get wrapped along these fibers. Since the integral of functions in L2

0(M)
on any circle Te3 is zero, this implies that, for any continuous function f ∈ L2

0(M), the integral of
f ◦ϕv

t along any short segment in direction e2 is small. Let us now formalize this idea.
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Proof of Theorem 3.9. Since the space of continuous functions C0(M) = C (M)∩L2
0(M) in L2

0(M)
is dense in L2

0(M), it is enough to prove the claim for every f ,g∈C0(M). Let us assume that v1 6= 0,
the proof in the case v2 6= 0 is identical.

Let a = min{‖ f‖−1
∞

,1} ·min{‖g‖−1
∞

,1} and let us fix ε > 0. Since f and g are uniformly
continuous on M, let δ > 0 be such that if d(p,q)< δ then both | f (p)− f (q)|< aε and |g(p)−
g(q)|< aε . Call σ = aδ and fix T > (aεσv1)

−1. Let t ≥ T .
By Lemma 3.7, for any s ∈ R we have

〈 f ◦ϕ
v
t ,g〉=

∫
M

f ◦ϕ
v
t (p)g(p)dµ =

∫
M

f ◦ϕ
v
t (p∗ se2)g(p∗ se2)dµ.

Moreover, for any s ∈ [0,σ ], by uniform continuity,

| f ◦ϕ
v
t (p∗ se2)g(p∗ se2)− f ◦ϕ

v
t (p∗ se2)g(p)| ≤ ‖ f‖

∞
|g(p∗ se2)−g(p)|< ε.

In particular, averaging from 0 to σ ,

|〈 f ◦ϕ
v
t ,g〉|=

∣∣∣∣ 1
σ

∫
σ

0

∫
M

f ◦ϕ
v
t (p∗ se2)g(p∗ se2)dµ

∣∣∣∣
≤
∣∣∣∣ 1
σ

∫
σ

0

∫
M

f ◦ϕ
v
t (p∗ se2)g(p)dµ ds

∣∣∣∣+‖ f ◦ϕ
v
t (p∗ se2)g(p∗ se2)− f ◦ϕ

v
t (p∗ se2)g(p)‖

∞

<
∫

M

∣∣∣∣ 1
σ

∫
σ

0
f ◦ϕ

v
t (p∗ se2)ds

∣∣∣∣ · |g(p)|dµ + ε.

(3.4)

We now focus on the integral in absolute value above. Geometrically, it corresponds to integrating
the function f along the push-forward of a segment of length σ in direction e2 under the nilflow ϕv

t .
Let us see that it is “almost vertical”. Since

se2 ∗ tv = (tv1,s+ tv2, tv3− (tv1)/2) and tv∗ se2 = (tv1,s+ tv2, tv3 +(tv1)/2),

we can rewrite se2 ∗ tv = tv∗ (−stv1)e3 ∗ se2. By uniform continuity of f , we get

| f ◦ϕ
v
t (p∗ se2)− f (p∗ tv∗ (−stv1)e3)| ≤ ε.

Thus, if we write pt := ϕv
t (p) = p∗ tv, from (3.4) we get

|〈 f ◦ϕ
v
t ,g〉|<

∫
M

∣∣∣∣ 1
σ

∫
σ

0
f (pt ∗ (−stv1)e3)ds

∣∣∣∣ · |g(p)|dµ +2ε. (3.5)

For any q ∈M and r ∈ R, from the assumption f ∈ C0(M) it follows that∣∣∣∣∫ r

0
f (q∗ se3)ds

∣∣∣∣= ∣∣∣∣∫ r

brc
f (q∗ se3)ds

∣∣∣∣≤ ‖ f‖
∞
,

since the integral of along a fiber Re3/Ze3 is zero. By a change of variable, we get∣∣∣∣ 1
σ

∫
σ

0
f (pt ∗ (−stv1)e3)ds

∣∣∣∣= ∣∣∣∣ 1
σtv1

∫
σtv1

0
f (pt ∗ (−s)e3)ds

∣∣∣∣≤ ‖ f‖
∞

σT v1
< aε ‖ f‖

∞
.

Using this observation in (3.5), we conclude

|〈 f ◦ϕ
v
t ,g〉|< aε ‖ f‖

∞
‖g‖

∞
+2ε < 3ε,

which finishes the proof.

Exercise 3.10. Prove the decomposition (3.3).
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3.2.2 Ergodicity

We now look at ergodicity. The result we will prove is the following.

Theorem 3.11. Let ϕv be a Heisenberg nilflow on the Heisenberg nilmanifold M = Γ1\h, where
v = (v1,v2,v3) ∈ h. The following are equivalent.

(a) The nilflow ϕv is uniquely ergodic.

(b) The Haar measure µ is ergodic for ϕv.

(c) The projected linear flow φ v
t : T2 → T2, with v = (v1,v2) ∈ R2, as in Proposition 3.8, is

minimal.

(d) The coordinates v1 and v2 are rationally independent.

Clearly, (a) implies (b). By Theorem 1.5, (c) and (d) are equivalent. We leave as an exercise to
the reader, Exercise 3.12, to check that (b) implies (d).

Exercise 3.12. Show that if v1 and v2 are rationally dependent, then ϕv is not ergodic; in particular
(b) implies (d) in Theorem 3.11.

Our goal is to verify that (d) implies (a). We will actually first prove that (d) implies (b), and
then we will show (a) using (b). In order to do this, in Lemma 3.13 below, we provide a special
flow representation of our nilflow. Let us recall the general definition of special flows first. Given
an invertible probability preserving system T : (X ,µ)→ (X ,µ) and a positive measurable function
f : X → R>0, we define the space

X f := {(x,r) : x ∈ X , 0≤ r ≤ f (x)} /∼,

where the relation ∼ identifies the points (x, f (x)) with (T x,0). The special flow over T with roof
function f is the measurable flow Tt = T f

t on X f defined by Tt(x,r) = (x,r+ t), equipped with the
invariant measure µ×dr, where dr is the Lebesgue measure on the second coordinate.

Lemma 3.13. Let ϕv be a Heisenberg nilflow on M as above. Assume that v2 6= 0. Then, ϕv is
smoothly isomorphic to the special flow over the skew-translation

T : T2→ T2

Jx1,x2K 7→ Jx1 +α,x2 + x1 +β K,

where α = v1/v2 and β = (v1 +2v3)/(2v2), with constant roof function f = 1/v2.

Proof. We will find an embedded submanifold isomorphic to T2 which intersects all orbits of the
nilflow (i.e., a global cross-section for the flow) and whose return time is constant and equal to
1/v2. This will suffice to prove our claim.

The set
Σ = {Γ1(x,0,z) : x,z ∈ [0,1)} ⊂M

is an embedded submanifold in M, and the map Γ1(x,0,z) 7→ Jx,zK realizes an isomorphism between
Σ and T2. Under the assumption v2 6= 0, all orbits of the nilflow intersect Σ, more precisely if
p = Γ1(x,y,z) ∈M with x,y,z ∈ [0,1), then it is easy to see that ϕv

−y/v2
(p) ∈ Σ.

If p = Γ1(x,0,z) ∈ Σ, then ϕv
t (p) ∈ Σ if and only if tv2 ∈ Z. It follows that the first return time

to Σ is constant and equal to 1/v2. The first return map T = ϕv
1/v2

on Σ is

T p = ϕ
v
1/v2

(p) = Γ1(x,0,z)∗ (v1/v2,1,v3/v2) = Γ1(x+ v1/v2,1,z+ v3/v2 + x/2)

= Γ1 ∗ (−e2)∗ (x+ v1/v2,1,z+ v3/v2 + x/2) = Γ1(x+ v1/v2,0,z+ v3/v2 + x/2+ v1/(2v2)),
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that is, T is a skew-translation on Σ' T2 of the desired form. By Fubini, the Haar measure µ on M
is identified with the product of the Lebesgue measure on Σ and the rescaled Lebesgue measure
v2 dr on the second component.

Assumption (d) is equivalent to say that α in Lemma 3.13 is irrational. Our goal is now to show
that if α /∈Q, then the special flow Tt is uniquely ergodic. We first verify that (d) implies (b) in
Theorem 3.11 by showing that the Lebesgue measure on T2 is ergodic for T (the fact that ergodicity
of the base map implies ergodicity of the special flow is a general standard fact, but we still show it
for the sake of completeness).

Lemma 3.14. Assume that α /∈Q. Then the skew-translation T : (T2,Leb)→ (T2,Leb) is ergodic.
In particular, if v1 and v2 are rationally independent, then the Haar measure µ is ergodic for ϕv.

Proof. Similarly to Theorem 1.15, we use Fourier analysis. For any f ∈ L2(T2), let us consider the
Fourier expansion

f (JxK) = ∑
n∈Z2

fn e2πin·x, with ∑
n∈Z2

| fn|2 = ‖ f‖2
2 .

In particular, notice that | fn| → 0 when ‖n‖
∞
→ ∞.

Assume that f is an invariant function, that is assume that f ◦T = f in L2(T2). For all x ∈ R2,
by definition

f ◦T (JxK) = ∑
n∈Z2

fn e2πin·(x1+α,x2+x1+β ) = ∑
n∈Z2

fn e2πin1α e2πin2β e2πi((n1+n2)x1+n2x2).

By uniqueness of the coefficients, we must have

f(n1+n2,n2) = f(n1,n2) e2πin1α e2πin2β for all n1,n2 ∈ Z. (3.6)

In particular, (3.6) implies that | f(n1+n2,n2)|= | f(n1,n2)| and, by induction, for all k ∈ Z, we also have
| f(n1+kn2,n2)|= | f(n1,n2)|. Since we know that | fn| → 0 when ‖n‖

∞
→ ∞, we deduce that f(n1,n2) = 0

for all n2 6= 0. On the other hand, when n2 = 0, again from (3.6), we get f(n1,0) = f(n1,0) e2πin1α .
Since α /∈Q, this forces f(n1,0) = 0 for all n1 6= 0. We conclude that f = f(0,0) is constant.

We have shown that α = v1/v2 /∈Q implies the ergodicity of the base skew-product. We want
to show that this implies ergodicity of the special flow Tt . Let A be an invariant set for Tt . In
particular, A is foliated by orbits of Tt . Therefore, the intersection Σ∩A is an invariant set for T .
This implies that Leb(Σ∩A) is 0 or 1. Since the measure µ for the special flow is a product of the
Lebesgue measure on the base and of v2 dr on the fibers, by Fubini, it follows that µ(A) is either 0
or 1. This proves ergodicity of the special flow, and hence of ϕv.

We are ready to finish the proof of Theorem 3.11.

Lemma 3.15. If α /∈Q, then the skew-translation T is uniquely ergodic.

Proof. Let ν be a probability ergodic invariant measure for S; we need to show that ν = Leb2, the
two-dimensional Lebesgue measure on T2. Fix f ∈ C (T2); we will show that ν( f ) = Leb2( f ),
which implies our result.

Since the Lebesgue measure Leb2 is ergodic, there exists a set B⊆ T2 with Leb2(B) = 1 such
that for all Jx1,x2K ∈ B we have

AN f (Jx1,x2K) :=
1
N

N−1

∑
n=0

f ◦Sn(Jx1,x2K)→ Leb2( f ) as N→ ∞.

By Fubini, for Lebesgue almost all Jx1K ∈ T1 we must have that Leb1(B∩{Jx1K}×T1) = 1. We
claim that {Jx1K}×T1 ⊂ B for almost all x ∈ T1.
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For any fixed Jx1K ∈ T1, the family of functions AJx1K := {AN f (Jx1, ·K) : T1 → C}N∈N is
equibounded and equicontinuous, since f is continuous (hence bounded) and the restriction of T to
any fixed fiber is an isometry. By the Ascoli-Arzelà Theorem, the closure of AJx1K is compact, in
particular the sequence AN f (Jx1, ·K) has limit points in C (T1). Since we showed that for almost
all Jx1K ∈ T1, the sequence of functions AN f (Jx1, ·K) converges to Leb2( f ) almost everywhere in
T1, we deduce that AN f (Jx1, ·K) converges to Leb2( f ) uniformly on T1 for almost all Jx1K ∈ T1. In
other words, we can write B = B1×T1 for a set B1 ⊆ T1 with Leb1(B1) = 1.

Let π : T2→ T1 denote the projection on the first coordinate. Then, the push-forward measure
π∗ν is invariant under x 7→ x+α . Since α /∈Q, by Theorem 1.21 we get π∗ν = Leb1. This implies
that

ν(B) = ν(B1×T1) = π∗ν(B1) = Leb1(B1) = 1.

Since, by the Ergodic Theorem, the set E of points Jx1,x2K ∈ T2 for which AN f (Jx1,x2K)→ ν( f )
has ν-measure 1, it follows that ν(E∩B) 6= 0, in particular there exists a point Jx1,x2K ∈ E∩B. For
such a point, we have Leb2( f ) = limN→∞ AN f (Jx1,x2K) = ν( f ), which implies ν( f ) = Leb2( f )
and completes the proof of the lemma.

Corollary 3.16. If v1 and v2 are rationally independent, then ϕv is uniquely ergodic.

Proof. As before, let M = {p = Γ1(x,y,z) : x,y,z ∈ [0,1)}, Σ = {q = Γ1(x,0,z) : x,z ∈ [0,1)}, and
let ϕv be a Heisenberg niflow, with v = (v1,v2,v3) ∈ h and v1,v2 rationally independent. It is clear
that unique ergodicity is preserved by all positive constant rescalings; that is to say, {ϕv

t }t∈R is
uniquely ergodic if and only if {ϕv

at}t∈R is uniquely ergodic for all a > 0. Therefore, without loss
of generality, we can assume that v2 = 1.

Let f ∈ C (M). By Proposition 1.20, we need to show that, for all p ∈M, 1
T

∫ T
0 f ◦ϕv

t (p)dt
converges to a constant as T → ∞. Let us define g : Σ→ C by

g(q) =
∫ 1

0
f ◦ϕ

v
t (q)dt.

Clearly, g is continuous on Σ. By unique ergodicity of the skew-translation T = ϕv
1 (see Lemma

3.15), which by definition is the time-one map of the flow ϕv, we have

lim
N→∞

1
N

N−1

∑
n=0

g◦T n(q) =
∫

Σ

gdLeb . (3.7)

We can rewrite the average in left-hand side of (3.7) as

1
N

N−1

∑
n=0

g◦T n(q) =
1
N

N−1

∑
n=0

∫ 1

0
f ◦ϕ

v
t (ϕ

v
n (q))dt =

1
N

∫ N

0
f ◦ϕ

v
t (q)dt,

so that, for all q ∈ Σ, we deduce

1
N

∫ N

0
f ◦ϕ

v
t (q)dt→

∫
Σ

gdLeb =
∫

Σ

∫ 1

0
f ◦ϕ

v
t dLeb =

∫
M

f dµ, as N→ ∞, N ∈ N. (3.8)

Let now p = Γ1(x,y,z) ∈M, with x,y,z ∈ [0,1), be arbitrary. Notice that

q = ϕ
v
−y(p) = Γ1(x− y,0,z− xy/2) ∈ Σ,

thus, from (3.8), after a change of variable, we get

lim
N→∞, N∈N

1
N

∫ N−y

−y
f ◦ϕ

v
t (p)dt = µ( f ).
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If T > 0, define N = bTc+1. Then,∣∣∣∣ 1
T

∫ T

0
f ◦ϕ

v
t (p)dt− 1

N

∫ N−y

−y
f ◦ϕ

v
t (p)dt

∣∣∣∣
≤ 1

T

∣∣∣∣∫ T

0
f ◦ϕ

v
t (p)dt−

∫ N−y

−y
f ◦ϕ

v
t (p)dt

∣∣∣∣+ ∣∣∣∣ 1
T
− 1

N

∣∣∣∣ · ∣∣∣∣∫ N−y

−y
f ◦ϕ

v
t (p)dt

∣∣∣∣
≤ 2‖ f‖

∞

T
+

N +1
NT

‖ f‖
∞
,

which tends to zero (uniformly in p) as T → ∞. We conclude that

lim
T→∞

1
T

∫ T

0
f ◦ϕ

v
t (p)dt = lim

N→∞, N∈N

1
N

∫ N−y

−y
f ◦ϕ

v
t (p)dt = µ( f ),

which proves unique ergodicity.

Exercise 3.17. Generalize the proof Lemma 3.15 to compact Abelian extensions of uniquely ergodic
systems; that is, prove the following version of a theorem of Furstenberg.

Let T : X → X be a uniquely ergodic homeomorphism of a compact metric space, and let µ be
the unique invariant measure. Let n≥ 1 and let f : X → Tn be continuous. Define the skew-product
S : X×Tn→ X×Tn by S(x, p) = (T x, p+ f (x)). If S is ergodic with respect to µ×Leb, then it is
uniquely ergodic.

3.3 A connection to number theory

In this chapter, we studied the ergodic properties of Heisenberg nilflows ϕv, with v = (v1,v2,v3) ∈
h \ {0} on the nilmanifold M = Γ1\Heis = Γ1\h, where Γ1 = Z ∗Z ∗Z. In Theorem 3.11, we
showed that if v1 and v2 are rationally independent, then the nilflow is uniquely ergodic.

Let us take v2 = 1. In the proof of Theorem 3.11, we studied the time-one map T = ϕv
1 restricted

to the submanifold Σ. The latter is isomorphic to a skew-translation T Jx,yK= Jx+α,y+ x+β K on
the torus T2 equipped with the Lebesgue measure, where β = v1/2+ v3. We showed that for all
α,β ∈ R, if α /∈Q, then (T2,Leb,T ) is a uniquely ergodic transformation. As a consequence, we
get the following result.

Proposition 3.18. Let P(X) = aX2+bX +c∈R[X ] be a quadratic polynomial with real coefficients.
If a /∈Q, then for all positive integer k ≥ 1 we have

lim
N→∞

1
N

N−1

∑
n=0

e2πikP(n) = 0. (3.9)

In particular, the sequence (P(n))n∈N is equidistributed mod 1.

Proof. The equidistribution of the fractional parts of P(n) follows from (3.9) by the Weyl’s Cri-
terium. Thus, we only need to prove (3.9).

For any fixed α,β ∈ R, it is easy to see, for example by induction, that the associated skew-
product T Jx,yK= Jx+α,x+ y+β K on T2 satisfies

T nJx,yK= Jx+nα,y+nx+nβ +n(n−1)/2αK for all n ∈ Z.

We consider the continuous function fk(Jx,yK) = e2πiky, which has zero integral Leb( fk) = 0. Let
P(X) be a polynomial as in the statement of the proposition. Let α = 2a /∈Q and β = b+a, and
consider the point p = J0,cK ∈ T2. By Lemma 3.15, we deduce

0 = lim
N→∞

1
N

N−1

∑
n=0

fk ◦T n(p) = lim
N→∞

1
N

N−1

∑
n=0

fk(Jnα,c+n(b+a)+n(n−1)aK) = lim
N→∞

1
N

N−1

∑
n=0

e2πikP(n),
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which proves the result.

Sums of the form
N−1

∑
n=0

e2πiP(n),

where P is a polynomial with real coefficients, are called Weyl sums and they are classical objects
in number theory. In the case of a quadratic polynomial, they are called quadratic Weyl sums or
theta sums, and they have been studied since the work of Hardy and Littlewood [9, 10]. Recently,
the connection of Weyl sums to the ergodic theory of nilflows has become the subject of a lot of
research. For example, we highlight the work of Flaminio and Forni [7], who recovered the optimal
bounds ∣∣∣∣∣N−1

∑
n=0

e2πiP(n)

∣∣∣∣∣= o(N1/2+ε) for all ε > 0,

(originally proved by Fiedler, Jurkat and Körner [5] using analytic number theory) by studing the
quantitative ergodic properties of Heisenberg nilflows. Although this goes beyond the scope of this
course, it is interesting to notice how the number theoretic properties of polynomial sequences and
the ergodic theory of nilflows are intimately related.
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Chapter 4

Elements of hyperbolic geometry

We have seen in Proposition 2.27 that the Lie group PSL(2,R) acts on the hyperbolic plane by
isometries; in this chapter, we will study this action in detail. We will work, however, in another
model of the hyperbolic plane, namely the upper-half space, which we now introduce.

4.1 The hyperbolic plane

4.1.1 The upper-half space model

Let
H := {z = x+ iy ∈ C : y = ℑ(z)> 0}.

To fix notation, we will always denote elements of H by z = x+ iy, where x = ℜ(z) is the real part
of z and y = ℑ(z)> 0 is its imaginary part.

For any z ∈H, we identify its tangent space TzH with R2 ' C. The hyperbolic metric on H is
defined by

〈v,w〉z :=
1
y2 v ·w, for v,w ∈ TzH, z ∈H.

We remark that, for any z ∈H, the scalar product 〈·, ·〉z is a rescaled version of the Euclidean scalar
product on R2; in particular, the topology induced by the hyperbolic metric on H is the same as the
Euclidean topology. As we will see shortly, the geometry, however, is very different.

As usual, the hyperbolic metric allows to define the lengths of curves γ : [a,b]→H by

`(γ) =
∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t) dt,

and, in turn, we define the hyperbolic distance by

dH(z0,z1) = inf{`(γ) : γ is a smooth curve from z0 to z1}. (4.1)

We will see shortly that the hyperbolic distance between two points z0 and z1 is always realized by
a smooth curve, which is called the hyperbolic geodesic between z0 and z1.

4.1.2 The action of PSL(2,R) on H

Let g =
(

a b
c d

)
∈ SL(2,R), and let

g.z :=
az+b
cz+d

, for z ∈H (4.2)

be the associated Möbius transformation.
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Lemma 4.1. Equation (4.2) gives a well-defined action of PSL(2,R) on H.

Proof. We first check that the definition is well-posed: the denominator cz+d in (4.2) is zero if
and only if z =−d/c ∈ R or d = c = 0; both possibilities cannot occur by definition.

Let us verify that all Möbius transformations map H to H. Indeed, for any g =
(

a b
c d

)
∈ SL(2,R)

and z ∈H, we compute the imaginary part of g.z by

ℑ(g.z) =
1
2
(g.z−g.z) =

1
2

(
az+b
cz+d

− az+b
cz+d

)
=

(az+b)((cz+d))− (az+b)(cz+d)
2(cz+d)(cz+d)

=
ad−bc
|cz+d|2

z− z
2

=
ℑ(z)
|cz+d|2

.

(4.3)

Thus, since ℑ(z)> 0, we get ℑ(g.z)> 0, which shows that g.z ∈H.
Finally, we verify it is an action. Let g =

(
a b
c d

)
, g̃ =

(
ã b̃
c̃ d̃

)
∈ SL(2,R) and z ∈H. Then, we

have

g̃.(g.z) = g̃.
(

az+b
cz+d

)
=

ã(az+b
cz+d )+ b̃

c̃(az+b
cz+d )+ d̃

=
(aã+ b̃c)z+(ãb+ b̃d)

(c̃a+ d̃c)z+(c̃b+ d̃d)
=

(
aã+ b̃c ãb+ b̃d
c̃a+ d̃c c̃b+ d̃d

)
.z

= (g̃g).z,

which proves the claim. The matrix −e =
(−1 0

0 −1

)
, as Möbius transformation, is the identity, hence

(4.2) descends to an action of the Lie group PSL(2,R) on H.

Möbius transformations on H are smooth maps and their derivative can be expresses as

g′(z) =
a(cz+d)− (az+d)c

(cz+d)2 =
1

(cz+d)2 . (4.4)

In particular, we can define an action D of PSL(2,R) on the tangent bundle TH=H×C by

Dg.(z,w) = (g.z,g′(z)w) =
(

az+b
cz+d

,
w

(cz+d)2

)
.

Proposition 4.2. 1. For every g ∈ PSL(2,R), the map Dg preserves the hyperbolic metric. In
particular, g acts on H by isometries.

2. The stabilizer of i ∈H is the compact group PSO(2,R) = SO(2,R)/{±e}.

3. The action on H is transitive.

Proof. Let us fix z ∈H and v,w ∈ TzH. Notice that under the identification R2 = C we can write
the scalar product v ·w as ℜ(vw). Using the definition of the hyperbolic metric, (4.3), and (4.4), we
compute

〈g′(z)v,g′(z)w〉g.z =
1

(ℑ(g.z))2 ℜ(g′(z)vg′(z)w) =
|cz+d|4

(ℑz)2 |g
′(z)|2ℜ(vw) =

1
(ℑz)2 v ·w = 〈v,w〉z.

This shows that Dg preserves the hyperbolic metric, hence g is an isometry.
Let us compute the stabilizer of the point i ∈H. By definition, g.i = i if and only if i = ai+b

ci+d ,
which can be rewritten as (b+ c)+ i(a−d) = 0. Thus, g =

(
a b
c d

)
∈ Stab(i) if and only if b =−c

and a = d. Since ad−bc = 1, we get a2 +b2 = 1. In particular, we can choose θ ∈ [0,2π) such
that a = cosθ and b = sinθ . From this we conclude that

g =

(
cosθ sinθ

−sinθ cosθ

)
∈ SO(2,R),
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which proves the claim.
Finally, let us verify that the action is transitive. Let z = x+ iy ∈H; it is enough to show that

there exists g ∈ SL(2,R) such that g.i = z. By choosing the element g =
(√

y x/
√

y
0 1/

√
y

)
, it is easy to

check that we indeed get g.i = x+ iy = z as desired.

Corollary 4.3. We can identify H= PSL(2,R)/PSO(2,R).

Proof. The identification is given by associating to the point z ∈ H the element gPSO(2,R) ∈
PSL(2,R)/PSO(2,R), where g ∈ PSL(2,R) is such that g.i = z.

Let us denote by T 1H the unit tangent bundle of H, that is the subset of the tangent bundle
consisting of vectors of norm 1,

T 1H= {(z,v) ∈ TH : ‖v‖= 1}.

By Proposition 4.2, the action of PSL(2,R) on TH restricts to T 1H. We now show that the this
latter action is simply transitive.

Proposition 4.4. The action of PSL(2,R) on T 1H is simply transitive.

Proof. Let us fix (z,v) ∈ T 1H. Since the tangent vector v ∈ TzH= C has unit (hyperbolic) norm,
we can identify it with the angle 2θ that it forms with the half line iR>0; In other words, we can
write v = yi(cos(2θ)+ isin(2θ)), where that the factor y = ℑz is to ensure that v has norm 1.

Let

g =

(√
y x/

√
y

0 1/
√

y

) (
cosθ sinθ

−sinθ cosθ

)
∈ PSL(2,R).

Using Proposition 4.2, we get

Dg.(i, i) = D
(√

y x/
√

y
0 1/

√
y

)
.

(
i,

i
(cosθ − isinθ)2

)
=

(
z,yi

(cosθ + isinθ)2

(cos2 θ − i2 sinθ)2

)
= (z,v),

which shows that the action is transitive.
Let us show that the stabilizer of (i, i) is {±e}. By Proposition 4.2, if Dg.(i, i) = (i, i), then

g ∈ SO(2,R). Let us write g =
(

cosθ sinθ
−sinθ cosθ

)
. Similarly as above, g′(i)i = i implies

i =
i

(cosθ − isinθ)2 = i(cosθ + isinθ)2.

Therefore, we deduce 2θ = 0 mod 2π , which means g =±e. This completes the proof.

By Proposition 4.4, for any (z,v)∈ T 1H there exists a unique g∈ PSL(2,R) such that Dg.(i, i)=
(z,v). In this way, we have an identification

T 1H' PSL(2,R). (4.5)

4.1.3 Hyperbolic geodesics

Recall from (4.1) that the hyperbolic distance between two points z0,z1 ∈ H is defined as the
infimum of the hyperbolic lengths of all smooth curves connecting z0 to z1. We will now see that
the infimum is always realized by a unique (up to reparametrization) curve, which will be said to be
a geodesic.

Let us start by looking at a simple case.
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Lemma 4.5. The distance between z0 = iy0 and z1 = iy1 is dH(z0,z1) = | log(y1/y0)| and is realized
by the curve

γ(t) = y0

(
y1

y0

)t

i, for t ∈ [0,1].

Any other smooth curve γ̃ : [a,b]→H with the same length is a smooth reparametrization of γ; in
other words, there exists an increasing, piecewise differentiable map f : [a,b]→ [0,1] such that
γ̃ = γ ◦ f .

Proof. First of all, we notice that γ(t) = iℑγ(t) and γ̇(t) = γ(t) log(y1/y0). On one hand,

dH(z0,z1)≤ `(γ) =
∫ 1

0
‖γ̇(t)‖Tγ(t)H dt =

∫ 1

0

|γ(t)|
ℑγ(t)

∣∣∣∣log
(

y1

y0

)∣∣∣∣dt =
∫ 1

0

∣∣∣∣log
(

y1

y0

)∣∣∣∣dt

=

∣∣∣∣log
(

y1

y0

)∣∣∣∣ .
On the other hand, let now η : [a,b]→ H be any other smooth curve connecting z0 to z1. Up to
a reparametrization, we can assume that [a,b] = [0,1] and, up to reversing the orientation, that
ℑη(0)≤ ℑη(1). Let us write ηx(t) = ℜη(t) and ηy(y) = ℑη(t). Then,

`(η) =
∫ 1

0
‖η̇(t)‖Tη(t)H dt =

∫ 1

0

√
η̇2

x (t)+ η̇2
y (t)

ℑη(t)
dt ≥

∫ 1

0

|η̇y(t)|
ηy(t)

dt ≥
∫ 1

0

η̇y(t)
ηy(t)

dt

= log
(

ηy(1)
ηy(0)

)
=

∣∣∣∣log
(

y1

y0

)∣∣∣∣ .
(4.6)

This shows that dH(z0,z1) = `(γ) = | log(y1/y0)|. Finally, notice that equality holds in (4.6) if and
only if η̇x(t) = 0 and η̇y(t)≥ 0 for all t ∈ [0,1], which proves the second claim.

The infinite path γ(t) = y0et i starting at y0i ∈H is a geodesic ray, that is, a curve realising the
minimum distance between its points and parametrized with unit speed.

Proposition 4.6. Any two distinct points z0,z1 ∈H are connected by a geodesic γ . This curve is
unique: there exists a unique g ∈ PSL(2,R) such that γ(t) = g.(et i).

Proof. By Proposition 4.2, we can choose g0 ∈ PSL(2,R) such that g−1
0 .z0 = i; let us denote

z = g−1
0 .z1. For any g̃ =

(
cosθ −sinθ

sinθ cosθ

)
∈ PSO(2,R), we have g̃g−1

0 .z0 = i; we claim that we can
choose g̃ so that g̃.z is purely imaginary. In order to do this, we have to solve

0 = ℜ(g̃.z) =
1
2
(g̃.z+ g̃.z) =

1
2

(
cosθz− sinθ

sinθz+ cosθ
+

cosθz− sinθ

sinθz+ cosθ

)
.

After some calculations, we get that ℜ(g̃.z) = 0 if and only if

(|z|2−1)sin(2θ)+2ℜ(z)cos(2θ) = 0.

If |z|= 1, we can choose θ = π/4, otherwise we can choose θ such that tan(2θ) =− 2ℜz
|z|2−1 . We

have then showed that there exists g = g0g̃−1 ∈ PSL(2,R) such that g−1.z0 = i and g−1.z1 = iy for
some y > 0. Moreover, we can assume that y > 1: since z0 and z1 are distinct, we have y 6= 1, and if
y < 1, then

(
0 −1
1 0

)
.(iy) = iy−1.

By Lemma 4.5, there exists a unique geodesic curve between i and iy with unit speed given
by et i for t ∈ [0, logy], where logy = dH(i, iy). Hence, since g is an isometry, γ(t) = g.(et i) is a
geodesic curve between z0 and z1.
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Finally, one can check that the element g as above is unique: if h is another element such
that h.(et i) is a geodesic between z0 and z1, then h−1g.(et i) = et i. Letting h−1g =

(
a b
c d

)
, we get

et i = aet i+b
cet i+d and, taking the derivative at t = 0, we obtain

i =−i
ad−bc
(c− id)2 =−i

1
(c− id)2 .

This gives us c = 0 and d =±1, from which we get a =±1 and b = 0. Hence h = g in PSL(2,R).
This completes the proof.

By Proposition 4.6, geodesics can be described as the images of the vertical line et i under
Möbius transformations. It is a standard fact from elementary geometry that Möbius transformations
map vertical lines into either vertical lines or into semicircles with centre on the real axis. These
are all the hyperbolic geodesics.

4.2 Geodesic and horocycle flows

We are going to define the two flows which will be the subject of the rest of this course: the geodesic
and horocycle flow.

4.2.1 Algebraic and geometric definitions

We have seen that for any p = (z,v) ∈ T 1H there exists a unique geodesic ray starting at p; that
is, a unique smooth curve γ : R→H such that γ(0) = z, γ̇(0) = v and which realizes the smallest
distance between any two of its points. The image γ(R) is either a vertical line or a semicircle
with centre on the real axis. The geodesic flow gt : T 1H→ T 1H consists in following this unique
geodesic for time t. We are now going to show it can be seen as a homogeneous flow as discussed
in Chapter 2.

For (i, i) ∈ T 1H, we know that the geodesic is given by γ(t) = et i. Once again, notice that the
tangent vector has norm 1, since

‖γ̇(t)‖Tγ(t)H =
1

ℑγ(t)
|γ̇(t)|= 1.

Therefore, gt(i, i) = (et i,et i). It is immediate to check that

(et i,et i) = Dat .(i, i), where at =

(
et/2 0
0 e−t/2

)
∈ SL(2,R).

Let now (z,v) ∈ T 1H be arbitrary. We have shown that there exists a unique g ∈ PSL(2,R) such
that (z,v) = Dg.(i, i) and the geodesic starting at that point is the image under g of the vertical
geodesic at (i, i). In particular

gt(g.(i, i)) = gt(z,v) = Dg.(et i,et i) = Dg.(Dat .(i, i)) = D(gat).(i, i).

Thus, under the identification (4.5), the geodesic flow on T 1H translates into the flow on PSL(2,R)
that maps the element g into gat . Using the notation of Chapter 2, the geodesic flow is the
homogeneous flow

ϕ
a
t : g 7→ g

(
et/2 0
0 e−t/2

)
= gexp(ta), where a =

(
1/2 0
0 −1/2

)
∈ sl(2,R).

The other homogeneous flows on SL(2,R) we encountered in Chapter 2 were the ones generated
by u =

(
0 1
0 0

)
and v =

(
0 0
1 0

)
, namely the flows ϕu

t (g) = g
(

1 t
0 1

)
and ϕv

t (g) = g
(

1 0
t 1

)
. We now see

what are the geometric interpretations of these two flows.
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Proposition 4.7. 1. For all g ∈ SL(2,R) and all t,s ∈ R we have

ϕ
a
s ◦ϕ

u
t (g) = ϕ

u
e−st ◦ϕ

a
s (g). (4.7)

2. The flow ϕu
t consists of unit-speed translations along the stable manifolds of the geodesic

flow: points in the same orbit of ϕu
t get exponentially closed under the action of the geodesic

flow.

Proof. A straightforward computation gives us

ϕ
a
s ◦ϕ

u
t (g) = gexp(tu)exp(sa) = g

(
1 t
0 1

)(
es/2 0

0 e−s/2

)
= g

(
es/2 te−s/2

0 e−s/2

)
= g

(
es/2 0

0 e−s/2

)(
1 te−s

0 1

)
= gexp(sa)exp(e−stu) = ϕ

u
e−st ◦ϕ

a
s (g),

which proves (4.7).
Let us now verify the second claim. We fix a left-invariant metric on PSL(2,R) as in §2.4.1

given by the usual basis {a,u,v}. Then, the homogeneous flow ϕu
t has unit speed. Let us show that

points on the same orbit get exponentially close under the geodesic flow: fix g ∈ PSL(2,R) and let
g1 = ϕu

` (g) = gexp(`u) another point in the orbit of ϕu. Using (4.7), we get

d(ϕa
t (g),ϕ

a
t (g1)) = d(ϕa

t (g),ϕ
u
e−t` ◦ϕ

a
t (g)) = d(gexp(ta),gexp(ta)exp(e−t`u))

= d(e,exp(e−t`u)) = e−t`,

where we used the left-invariance of the metric on PSL(2,R). Since the latter term goes to zero as
t→ ∞ exponentially, the proof is complete.

The flow ϕu
t is called the (stable) horocycle flow. On the hyperbolic plane H, the orbits of the

horocycle flow (called horocycles) are either horizontal lines or circles tangent to the real axis (the
former case can be seen as a circle tangent to infinity). The point of tangency is the limit point of
the geodesic starting at any point of the horcycle orbit.

A similar characterization holds for v, we leave it as an exercise to the reader.

Exercise 4.8. Show that ϕa
s ◦ϕv

t (g) = ϕv
est ◦ϕa

s (g) for all g∈ SL(2,R) and all t,s∈R. Deduce that
ϕv

t parametrizes the unstable manifolds of the geodesic flow. It is called the (unstable) horocycle
flow.

Geodesic and horocycle flows on T 1H are rather boring, as every orbits escape to infinity (we
are in the same situation as a linear flow on Rn). In order to have some recurrence, we need to look
at the projections of these flows on finite volume quotients of PSL(2,R), which we are going to
focus on in the next section.

4.2.2 Finite volume homogeneous manifolds

Let us call G = PSL(2,R), and let Γ ≤ G be a discrete subgroup. We have seen in Lemma 2.36
that the quotient space M = Γ\G is a smooth manifold. Moreover, for every x = Γg ∈M, there
exists r > 0 such that the restriction of the canonical projection π : G→M to the ball centered at
g with radius r is a homeomorphism onto its image; an atlas of charts on M can be obtained by
considering these local inverses of π . The push-forward under π of any fixed left-invariant metric
on G gives us a distance on M by

dM(x1,x2) = inf
γ∈Γ

dG(g1,γg2), where xi = Γgi, i = 1,2,
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and the infimum above is actually a minimum by Lemma 2.35.
In a similar way, the push-forward of any Haar measure µG on G induces a well-defined measure

on M, which we will denote by µ . Recall that a discrete subgroup Γ is said to be a lattice if M has
finite measure, and is said to be co-compact if M is compact.

Before looking at examples of lattices, we are now going to show that the Haar measure µG

is invariant under right-multiplication, and therefore is an invariant measure for the geodesic and
horocycle flows. Given a discrete subgroup Γ of G, a subset F ⊂ G is called a fundamental domain
for Γ if

G =
⋃
γ∈Γ

γF, and µ(F ∩ γF) = 0 for all γ ∈ Γ\{e}.

In other words, a fundamental domain is a set which, up to a zero measure subset, contains one
representative per orbit of Γ.

Exercise 4.9. Show that if F ⊂ G is a fundamental domain for Γ, then so is Fg for all g ∈ G.

Proposition 4.10. Let Γ be a discrete subgroup of G, and assume that there exists a fundamental
domain F with finite Haar measure. Then, Γ is a lattice, all fundamental domains have the same
measure and for all measurable subsets B⊂M we have

µ(B) = µG(π
−1(B)∩F).

Moreover, µ is invariant under multiplication on the right and hence is an invariant measure for all
homogeneous flows on M.

Proof. Let A,A′ ⊂ G be two measurable sets such that the restrictions of the canonical projection
π : G→M to A and A′ are both injective up to zero measure sets and π(A) = π(A′). We now show
that µG(A) = µG(A′); in particular this will imply that any two fundamental domains F,F ′ for Γ

have the same Haar measure.
Notice that, for almost all g ∈ A, there exists a unique γ ∈ Γ such that γ−1g ∈ A′. Thus, up to a

zero measure set, we can write
A =

⊔
γ∈Γ

A∩ γA′,

and, similarly,
A′ =

⊔
γ∈Γ

A′∩ γA.

Using the left-invariance property of the Haar measure, we get

µG(A) = ∑
γ∈Γ

µG(A∩ γA′) = ∑
γ∈Γ

µG(γ
−1A∩A′) = µG(A′).

In particular, all fundamental domains have the same measure. By definition, the push-forward
measure µ on M can be expressed as in the statement of the proposition, and this also proves that
µ(M) = µG(F) is finite, hence Γ is a lattice.

We are left to show that µ is right-invariant. We will prove that the Haar measure µG is
right-invariant, from which the claim follows. Let us fix g ∈ G, and consider the measure νg on
G defined by νg(A) = µG(Ag). Clearly, νg is invariant by left-multiplication of any element of G,
since the Haar measure µG is. By uniqueness (see Theorem 2.23), there exists a positive constant
m(g)> 0 such that νg = m(g)µG. Let now F be a fundamental domain for Γ. By Exercise 4.9, the
set Fg is also a fundamental domain; therefore, using what we proved so far,

µG(F) = µG(Fg) = νg(F) = m(g)µG(F).

This implies that m(g) = 1 for all g ∈ G, that is, µG is right-invariant. The proof is then complete.
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Given a finite volume homogeneous manifold M = Γ\G, we will always consider the nor-
malization of the Haar measure µG that makes µ a probability measure on M; that is, such that
µ(M) = µG(F) = 1, where F is any fundamental domain for M.

In order to determine whether a discrete subgroup is a lattice, it is enough to find a fundamental
domain F ⊂ G = T 1H and compute its Haar measure. Let us try to express the Haar measure on
PSL(2,R) in terms of the coordinates on T1H.

We have seen in Proposition 4.2 that the action of G on H by Möbius transformations is
isometric with respect to the hyperbolic metric y−2(dx2 +dy2). Thus, the action of G preserves the
Riemannian volume

dmH =
1
y2 dxdy.

Once the base point z ∈H is fixed, the restriction of the action of G on tangent vectors in T 1
z H is

given by v 7→ g′(z)v, which is a rotation (a multiplication by a constant of modulus one with respect
to the hyperbolic metric). Therefore, if we choose the angle θ that v makes with the vertical as a
coordinate on T 1

z H, all maps Dg for g ∈ G preserve the modulus of the 1-form dθ . Therefore, we
have shown that the maps Dg on T 1H preserve the measure

dµH :=
1
y2 dxdydθ .

By the identification (4.5), the action of Dg on H corresponds to the left-multiplication action on
G = PSL(2,R). By uniqueness of the Haar measure in Theorem 2.23, we conclude that µG = µH
(as usual, up to a constant factor).

The expression we just found for the Haar measure on PSL(2,R) allows us to estimate explicilty
the measure of fundamental domains for discrete subgroups. We remark that, since the stabilizer of
i ∈H acts on the right (see Corollary 4.3), while the discrete subgroup Γ on the left, we have that

Γ\PSL(2,R) = Γ\T 1H= T 1(Γ\H),

that is, the quotient M can be identified with the unit tangent bundle of the hyperbolic surface
S := Γ\H. In order to show that the measure of Γ\PSL(2,R) is finite, it is enough to show that the
hyperbolic area of S is finite:

mH(Γ\H)< ∞.

4.2.3 An important example: the Modular Surface

We can now see an important example of a lattice in PSL(2,R). Consider

Γ = PSL(2,Z) =
{

γ =

(
a b
c d

)
∈ PSL(2,R) : a,b,c,d ∈ Z

}
.

Clearly, Γ is a discrete subgroup of PSL(2,R). It will be useful to consider the elements

τ =

(
1 1
0 1

)
, σ =

(
0 −1
1 0

)
∈ Γ.

Notice that τ.z = z+1 and σ .z =−1/z.
We now describe a fundamental domain for Γ and show it has finite measure, thus showing that

Γ is a lattice.

Proposition 4.11. Let
E = {z ∈H : |z| ≥ 1, |ℜz| ≤ 1/2}.

Then, F = T 1(E)⊂ T 1H is a fundamental domain for Γ = PSL(2,Z). Moreover, Γ is a lattice in
PSL(2,R).
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Proof. Let us first assume that F is a fundamental domain for Γ, and let us estimate its measure.
Clearly, E is a subset of Ẽ = {z ∈H : |ℜz| ≤ 1/2, |ℑz| ≥

√
3/2}, so that its hyperbolic area can be

bounded by

mH(E)≤
∫

Ẽ
dmH =

(∫ 1/2

−1/2
dx
) (∫

∞

√
3/2

dy
y2

)
≤ 2√

3
< ∞.

where we used Fubini’s Theorem. Thus, µT 1H(F)≤ 2πmH(E)< ∞, which proves that Γ is a lattice.
Let us now verify that F is a fundamental domain for Γ. In order to do this, it is enough to show

that all Γ-orbits intersect E and, up to a zero measure set, they intersect E exactly once.
Fix z ∈ H, and let γ =

(
a b
c d

)
∈ Γ. By (4.3), ℑ(γ.z)→ 0 when either c or d go to infinity.

Thus, there exists γ ∈ Γ that maximizes ℑ(γ.z). Choose k ∈ Z such that |ℜw| ≤ 1/2, where
w = τkγ.z. If |w|< 1, then the element σ .w is such that ℑ(σ .w) = ℑ(w)/|w|> ℑ(w), contradicting
the maximality assumption. Hence |w| ≥ 1. This shows that w ∈ E and hence Γz∩E 6= /0.

It remains to show that if two points in E are in the same Γ-orbit, then they belong to a zero
measure set; in particular we will show that they belong to the boundary of E. Let us consider
z,w ∈ E such that w = γ.z for some γ ∈ Γ. Up to exchanging z and w, and considering γ−1, we can
assume that ℑ(w)≥ ℑ(z). We write again γ =

(
a b
c d

)
, with the sign assumption that c≥ 0. By (4.3),

from ℑ(γ.z)≥ ℑ(z) we get

1≥ |cz+d| ≥ ℑ(cz+d) = cℑz≥ c
√

3/2 > c/2,

from which it follows c = 0 or c = 1.
If c = 0, then 1 = detγ = ad implies that a = d =±1 so that γ.z = z±b. Since w = γ.z,z ∈ E

both have real part in [−1/2,1/2], the only possibilities are b = 0, which implies w = z, or b =±1
and ℜz =∓1/2, which means that w and z belongs to the boundary of E, as claimed.

If c = 1, then from the inequality |z+d| ≤ 1 we deduce that either d = 0, or d =±1. In the first
case, we get |z| ≤ 1, which, since z ∈ E, forces |z|= 1; moreover, the condition on the determinant
implies b =−1. Thus, w = γ.z = a−1/z ∈ E implies that a = 0 and |w|= 1 as well, or a = 1 and
z is the primitive sixth root of unity in E. Either way, both z and w belong to the boundary of E. In
the second case, similarly, from |z±1| ≤ 1 and |z| ≥ 1, we deduce that z is one of the sixth roots of
unity in E. A straightforward computation allows to conclude that also w is a sixth root of unity in
E. In both cases the claim is proved, hence the proof is complete.

The hyperbolic surface S = PSL(2,Z)\H is called the Modular Surface, and, as we mentioned
above, its unit tangent bundle can be identified with the quotient T 1(S) = PSL(2,Z)\PSL(2,R). It
is an example of a homogeneous space with finite measure but which is not compact.
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Chapter 5

Ergodic properties of geodesic and
horocycle flows

In this chaper, we are going to study the ergodic theory of geodesic and horocycle flows on finite-
volume quotients M of G = PSL(2,R). We showed in Proposition 4.10 that the normalized Haar
measure is an invariant probability measure for all homogeneous flows on M. We are going to show
that it is ergodic and, in fact, mixing for both the geodesic and the horocycle flow.

5.1 Ergodicity

5.1.1 Hopf’s argument

Let us fix a lattice Γ in G, and let M = Γ\G be a homogeneous space. We equip M with the measure
µ (which, locally, coincide with the Haar measure µG on G), normalized so that M is a probability
space. The goal is to show that the geodesic flow φ x

t : Γg 7→ Γgexp(tx) is ergodic with respect to µ .
One ingredient that we will need to use is that the subgroups exp(Ru) and exp(Rv) gener-

ate SL(2,R). One could show this fact using the general theory of Lie groups, or in a direct,
computation-based, way. We leave this as an exercise to the reader.

Exercise 5.1. (a) Show that all matrices of the form
(

a 0
0 1/a

)
or
(

0 a
−1/a 0

)
∈ SL(2,R) can be

written as a product exp(x1u)exp(x2v)exp(x3u)exp(x4v) for some xi ∈ R, i = 1,2,3,4.

(b) Show that all elements g ∈ SL(2,R) can be written as a product g = g0 exp(y1v)exp(y2u)
for some y1,y2 ∈ R, where g0 is either of the form

(
a 0
0 1/a

)
or
(

0 a
−1/a 0

)
.

(c) Deduce that all for all g ∈ SL(2,R) there exist xi ∈ R, i = 1, . . . ,x5 such that g =
exp(x1u)exp(x2v)exp(x3u)exp(x4v)exp(x5u).

Another result that we will use is the following, whose proof relies on Fubini’s Theorem and
the right-invariance of the Haar measure (see Proposition 4.10).

Lemma 5.2. Let A1,A2 ⊂M be two measurable sets of positive measure. Then, the set

{g ∈ G : µ(A1g∩A2)> 0}

has positive measure; in particular it is not empty.
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Proof. Let F ⊂ G be a fundamental domain for Γ. In particular, for any subset E ⊂ F we have
µG(E) = µ(π(E)). We can find two subsets B1,B2 ⊂ F such that, up to zero measure sets,
π(B1) = A1 and π(B2) = A2. Since π(B1g∩B2)⊂ A1g∩A2 for all g ∈ G, we obtain that

µ(A1g∩A2)≥ µ(π(B1g∩B2)) = µG(B1g∩B2),

thus, in order to conclude, it is enough to show that the set {g ∈G : µG(B1g∩B2)> 0} has positive
measure.

Before doing that, let us make a few observations:

1. for any g,h ∈ G, h ∈ B1g if and only if g ∈ B−1
1 h, where B−1

1 := {b−1 : b ∈ B1}.

2. µG(B1)> 0 if and only if µG(B−1
1 )> 0; indeed, it is easy to see that the measure ν(A) :=

µG(A−1) is a (right-invariant) Haar measure on G, and hence must be proportional to µG.

3. if
∫

G µG(B1g∩B2)dµ(g)> 0, then the set {g ∈ G : µG(B1g∩B2)> 0} has positive measure.

The third observation tells us that we should estimate
∫

G µG(B1g∩B2)dµ(g). Using Fubini’s
Theorem and the first observation,∫

G
µG(B1g∩B2)dµ(g) =

∫
G

(∫
G

1lB1g(h)1lB2(h)dµ(h)
)

dµ(g)

=
∫

G
1lB2(h)

(∫
G

1lB1g(h)dµ(g)
)

dµ(h) =
∫

G
1lB2(h)

(∫
G

1lB−1
1 h(g)dµ(g)

)
dµ(h)

=
∫

G
1lB2(h)µG(B−1

1 h)dµ(h).

From the right invariance of the Haar measure and from the second observation, we conclude∫
G

µG(B1g∩B2)dµ(g) =
∫

G
1lB2(h)µG(B−1

1 )dµ(h) = µG(B−1
1 )µG(B2)> 0,

which proves our claim.

In order to prove ergodicity, we need to show that any measurable function which is invariant
by the geodesic flow is almost everywhere constant. The first step in this direction is given by the
following lemma

Lemma 5.3. Let f : M→ C be a measurable function such that f ◦φ a
t = f almost everywhere for

all t ∈ R. For every s ∈ R, there exists a set Ms ⊂M of measure µ(Ms) = 1 such that for all p ∈M
for which both p ∈Ms and φ u

s (p) ∈Ms, we have f (p) = f (φ u
s (p)).

The same conclusion holds with φ u
s replaced by φ v

s .

Proof. Let f : M→C be as in the assumptions, and let s ∈R. Fix ε > 0, and choose a compact set
K ⊂M of measure µ(K)≥ 1− ε such that the restriction of f to K is continuous.

By the Ergodic Theorem, there exists a measurable function ` : M→ R such that

`(p) = lim
t→∞

1
t

∫ t

0
1lK ◦φ

a
r (p)dr

almost everywhere, and
∫

M `dµ =
∫

M 1lK dµ = µ(K)≥ 1− ε . Let

B =

{
p ∈M : `(p)>

1
2

}
.
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Then, since 0≤ `(p)≤ 1 almost everywhere,

1− ε ≤
∫

M
`dµ =

∫
B
`dµ +

∫
M\B

`dµ ≤ µ(B)+µ(M \B) · esssupp∈M\B `(p)

≤ µ(B)+
1
2

µ(M \B)≤ 1
2
+

1
2

µ(B),

from which we get µ(B)≥ 1−2ε .
Let now p ∈ B and q = φ u

s (p) ∈ B. Since, by definition of B, the geodesic orbits of p and q
spend more than half the times in K, we can find an increasing subsequence of times tn→ ∞ such
that φ a

tn(p) ∈ K and φ a
tn(q) ∈ K. Moreover, we have

φ
a
tn(q) = φ

a
tn ◦φ

u
s (p) = φ

u
e−tn s ◦φ

a
tn ,

hence
dG(φ

a
tn(p),φ a

tn(q))→ 0, as n→ ∞,

exponentially fast. By the invariance assumption on f and the continuity on K, we deduce

| f (p)− f (q)|= | f (φ a
tn(p))− f (φ a

tn(q))| → 0,

which means that f (p) = f (q) whenever p and q = φ u
s (p) are both in B.

If now we consider a smaller ε̃ < ε , we can repeat the same argument and find a larger B̃ on
which the same conclusion holds. Therefore, taking the union over all ε > 0, we deduce that there
exists a set Ms of full measure on which the conclusion holds.

The same argument can be repeated for φ v
s up to considering negative times tn→−∞.

We now have all the tools to prove ergodicity of the geodesic flow.

Theorem 5.4. Let Γ be a lattice in G = PSL(2,R). Then, the geodesic flow φ a
t on M = Γ\G is

ergodic with respect to µ .

Proof. Let f : M→ C be a measurable function which is invariant by the geodesic flow φ a
t . By

Lemma 5.3, for every fixed s ∈ R, there exists a set M′s of full measure such that

f (p) = f (pexp(su)) = f (pexp(sv)),

for all p ∈M′s.
We need to show that f is constant almost everywhere. Assume that this is not the case, namely

there exists two measurable subsets A1,A2 ⊂M, both of positive measure, and two disjoint balls
I1, I2 ⊂C such that f (A1)⊂ I1 and f (A2)⊂ I2. By Lemma 5.2, there exists g̃∈G such that µ(A1g̃∩
A2)> 0. According to Exercise 5.1, we can write g̃= exp(s1u)exp(s2v)exp(s3u)exp(s4v)exp(s5u).
By Lemma 5.3 applied (at most) 5 times, there exists a set

M̃ =Ms1 ∩Ms2 exp(−s1u)∩Ms3 exp(−s2v)exp(−s1u)∩Ms4 exp(−s3u)exp(−s2v)exp(−s1u)
∩Ms5 exp(−s4v)exp(−s3u)exp(−s2v)exp(−s1u),

with µ(M̃) = 1, such that f (p) = f (pg̃) for all p ∈ M̃.
The set

A(g̃) := A1g̃−1∩A2∩ M̃

has positive measure, in particular it is not empty. Let p ∈ A(g̃). From p ∈ A2 we get f (p) ∈ I2; on
the other hand, since p ∈ A1g̃−1, we get also f (pg̃) ∈ I1. However, p ∈ M̃ implies f (p) = f (pg̃),
which contradicts the fact that I1 and I2 are disjoint. The proof is then complete.
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5.1.2 Mautner’s Phenomenon

In this section we will see an instance of the so-called Mautner’s Phenomenon. Roughly speaking,
this refers to the situation when the invariance of an observable with respect to a flow implies an
additional invariance with respect to a transverse flow. In our case, we will show that a measurable
function which is invariant for the horocycle flow is also invariant for the geodesic flow. From this
we will deduce that the horocycle flow is ergodic.

As before, M = Γ\G is a finite-volume homogeneous manifold. We will need a couple of
preliminary results.

Lemma 5.5. Let (X ,d) be a metric space and let µ be a Borel probability measure on X. Assume
that {Tn}n∈N is a sequence of continuous measure preserving self-maps on X which converges
uniformly to a continuous measure preserving map T : X → X. Then, for every f ∈ L2(X), we have
f ◦Tn→ f ◦T in L2(X).

Proof. Let f ∈ L2(X) and let us fix ε > 0. By Lusin’s Theorem, there exists a compact set K ⊂ X
of measure µ(K)≥ 1− ε such that the restriction of f to K is uniformly continuous. Let δ > 0 be
such that | f (x)− f (y)|< ε whenever x,y ∈ K and d(x,y)< δ .

By assumption, there exists N ∈ N such that for all n ≥ N and for all x ∈ X we have
d(Tn(x),T (x))≤ δ . Let n≥ N, and consider K(n) := T−1K∩T−1

n K. By construction, and since
Tn and T are measure preserving, µ(K(n))≥ 1−2ε and | f ◦Tn(x)− f ◦T (x)|< ε for all x ∈ K(n).
Therefore, we get

‖ f ◦Tn− f ◦T‖2
2 =

∫
X
| f ◦Tn(x)− f ◦T (x)|2 dµ

=
∫

X\K(n)
| f ◦Tn(x)− f ◦T (x)|2 dµ +

∫
K(n)
| f ◦Tn(x)− f ◦T (x)|2 dµ

≤ 2‖ f‖2
2µ(X \K(n))+ ε

2
µ(K(n))≤ (4‖ f‖2

2 + ε)ε,

which proves our claim.

In the following proposition, we prove that if a function is invariant for the horocycle flow, it is
also invariant for any other homogeneous flow that satisfies a certain condition.

Proposition 5.6. Assume that w ∈ sl(2,R) satisfies the following condition:

for all t ∈ R, there exist sequences (rn)n∈N,(sn)n∈N of real numbers, and {gn}n∈N ⊂ G with
gn→ e, such that

exp(snu)gn exp(rnu)→ exp(tw).

Then, if a function f ∈ L2(M) is invariant under {φ u
t }t∈R, it is also invariant under {φ w

t }t∈R.

Proof. Let f ∈ L2(M) be any real-valued measurable function. We are going to define an auxiliary
function p : G→ R as follows

p(g) = 〈 f ◦Rg, f 〉,

where, we recall, Rg : M→M is the right-multiplication map p 7→ pg. The function p satisfies the
following properties:

1. p is continuous. Indeed, for any convergent sequence gn→ g in G, by the Cauchy-Schwartz
inequality

|p(gn)− p(g)|= |〈 f ◦Rgn− f ◦Rg, f 〉| ≤ ‖ f‖2 · ‖ f ◦Rgn− f ◦Rg‖→ 0,

which follows from Lemma 5.5.
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2. if p(g) = ‖ f‖2
2, then f ◦Rg =± f . This follows again from the Cauchy-Schwartz inequality:

‖ f‖2
2 = p(g)≤ |〈 f ◦Rg, f 〉| ≤ ‖ f‖2 · ‖ f ◦Rg‖2 = ‖ f2‖2

2.

Since equality holds, the terms f ◦Rg and f must be linearly dependent, f ◦Rg = λ f . Since
they have the same norm, λ =±1.

Assume now that f ∈ L2(M) is invariant by the horocycle flow, and let w ∈ sl(2,R) be as in the
assumption of the lemma. We need to show that f ◦φ w

t = f in L2(M) for all t ∈ R.
Fix t ∈ R, and let (rn)n∈N,(sn)n∈N, and {gn}n∈N be such that exp(snu)gn exp(rnu) →

exp((t/2)w). On one hand, by the continuity of p, we have

p(exp(snu)gn exp(rnu))→ p(exp((t/2)w)) .

On the other hand, by assumption on f and again by the continuity of p, we have

p(exp(snu)gn exp(rnu)) = 〈 f ◦Rexp(snu)gn exp(rnu), f 〉= 〈 f ◦φ
u
rn
◦Rgn ◦φ

u
sn
, f 〉= 〈 f ◦Rgn ◦φ

u
sn
, f 〉

= 〈 f ◦Rgn , f ◦φ
u
−sn
〉= 〈 f ◦Rgn , f 〉= p(gn)→ p(e) = ‖ f‖2

2.

Combining these two observations, we deduce p(exp((t/2)w)) = ‖ f‖2
2. By the second property of

p, we get f ◦φ w
t/2 =± f , from which it follows

f ◦φ
w
t = f ◦φ

w
t/2 ◦φ

w
t/2 =±( f ◦φ

w
t/2) = f ,

and the proof is complete.

Theorem 5.7. Let Γ be a lattice in G = PSL(2,R). Then, the horocycle flow φ u
t on M = Γ\G is

ergodic with respect to µ .

Proof. Let f ∈ L2(M) be an invariant function for the horocycle flow. We want to apply Proposition
5.6 to show that f is also invariant for the geodesic flow. Once we have done this, it follows from
Theorem 5.4 that f is constant almost everywhere, which proves the result.

Let a =
(

1/2 0
0 −1/2

)
be the generator of the geodesic flow. We show that we can find sequences

(rn)n∈N,(sn)n∈N such that(
1 sn

0 1

)(
1 0
1
n 1

)(
1 rn

0 1

)
→
(

e
t
2 0

0 e−
t
2

)
= exp(ta).

It is immediate to verify that sn = n(e
t
2 −1) and rn = n(e−

t
2 −1) satisfy the required property.

5.2 Mixing

In this section we prove that the geodesic and the horocycle flow are mixing. The proof relies on
the ergodicity of the horocycle flow that we showed in Theorem 5.7.

Let us first prove mixing for the geodesic flow.

Theorem 5.8. Let Γ be a lattice in G = PSL(2,R). Then, the geodesic flow φ a
t on M = Γ\G is

mixing with respect to µ .
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Proof. Let f ∈ L2(M). Mixing for the geodesic flow is equivalent to the claim that f ◦φ a
t converges

to µ( f ) =
∫

M f dµ in the weak-∗ topology.
Since ‖ f ◦φ a

t ‖2 = ‖ f‖2, the family { f ◦φ a
t : t ∈ R} is contained in a closed ball in the dual

L2(M)∗ = L2(M). By Banach-Alaoglu’s Theorem, such set is relatively compact in the weak-∗
topology; in particular it has limit points. We claim that the only limit is the constant µ( f ).

Let tn→ ∞ be an increasing sequence of times such that f ◦φ a
tn → f0, for some f0 ∈ L2(M)∗.

Notice that ∫
M

f dµ = 〈 f ,1l〉= 〈 f ◦φ
a
tn ,1l〉 → 〈 f0,1l〉=

∫
M

f0 dµ,

therefore it is enough to show that f0 is constant.
We show that f0 is invariant under the horocycle flow. Theorem 5.7 implies that it is constant,

hence finishing the proof. Let us fix T ∈ R, and let us prove that f0 ◦φ u
T = f0. Let ` ∈ L2(M); then,

using measure invariance,

〈 f ◦φ
a
tn , `〉= 〈 f , `◦φ

a
−tn〉= 〈 f ◦φ

u
−T/etn , `◦φ

a
−tn ◦φ

u
−T/etn 〉= 〈 f , `◦φ

a
−tn ◦φ

u
−T/etn 〉+E(tn),

where the term
E(tn) = 〈( f ◦φ

u
−T/etn − f ), `◦φ

a
−tn ◦φ

u
−T/etn 〉

satisfies
|E(tn)| ≤ ‖ f ◦φ

u
−T/etn − f‖2 · ‖`‖2→ 0,

where we used Cauchy-Schwartz inequality and Lemma 5.5.
We now apply the commutation relation (4.7) and we get

〈 f ◦φ
a
tn , `〉= 〈 f , `◦φ

u
−T ◦φ

a
−tn〉+E(tn) = 〈 f ◦φ

a
tn , `◦φ

u
−T 〉+E(tn).

Taking the limits for n→ ∞, since we showed E(tn)→ 0, we obtain

〈 f0, `〉= lim
n→∞
〈 f ◦φ

a
tn , `〉= lim

n→∞
〈 f ◦φ

a
tn , `◦φ

u
−T 〉+E(tn) = 〈 f0, `◦φ

u
−T 〉= 〈 f0 ◦φ

u
T , `〉.

Since the equality holds for all ` ∈ L2(M), we conclude that f0 = f0 ◦φ u
T in L2(M); in other words

we proved that f0 is invariant under the horocycle flow, which proves the theorem.

With the same strategy, we can prove that the horocycle flow is mixing.

Theorem 5.9. Let Γ be a lattice in G = PSL(2,R). Then, the horocycle flow φ u
t on M = Γ\G is

mixing with respect to µ .

Proof. We proceed as in Theorem 5.8: let f ∈ L2(M), and let f ◦ φ u
tn → f0 be a converging

subsequence in the weak-∗ topology of L2(M). We prove that f0 is invariant under the horocycle
flow. This forces f0 to be constant and equal to µ( f ), which proves mixing.

Let us fix T ∈ R. We will use again (4.7), more precisely we will apply the relation

φ
u
−tn ◦φ

a
2log(1+T/(2tn))(p) = φ

a
2log(1+T/(2tn)) ◦φ

u
−T 2/(2tn)

◦φ
u
−T ◦φ

u
−tn(p), (5.1)

for all p ∈M. As in the proof of Theorem 5.8, using (5.1), we have

〈 f ◦φ
u
tn , `〉= 〈 f ◦φ

a
2log(1+T/(2tn)), `◦φ

u
−tn ◦φ

a
2log(1+T/(2tn))〉

= 〈 f ◦φ
a
2log(1+T/(2tn)), `◦φ

a
2log(1+T/(2tn)) ◦φ

u
−T 2/(2tn)

◦φ
u
−T ◦φ

u
−tn〉

= 〈 f , `◦φ
u
−T ◦φ

u
−tn〉+E1(tn)+E2(tn),
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where we have

|E1(tn)|= |〈( f ◦φ
a
2log(1+T/(2tn))− f ), `◦φ

a
2log(1+T/(2tn)) ◦φ

u
−T 2/(2tn)

◦φ
u
−T ◦φ

u
−tn〉|

≤ ‖ f ◦φ
a
2log(1+T/(2tn))− f‖2 · ‖`‖2→ 0,

by Lemma 5.5, and similarly

|E2(tn)|= |〈 f ,(`◦φ
a
2log(1+T/(2tn)) ◦φ

u
−T 2/(2tn)

− `)◦φ
u
−T ◦φ

u
−tn〉|

≤ ‖ f‖2 · ‖`◦φ
a
2log(1+T/(2tn)) ◦φ

u
−T 2/(2tn)

− `‖2→ 0.

Therefore, we get

〈 f0, `〉= lim
n→∞
〈 f ◦φ

u
tn , `〉= lim

n→∞
〈 f ◦φ

u
tn , `◦φ

u
−T 〉+E1(tn)+E2(tn) = 〈 f0, `◦φ

u
−T 〉= 〈 f0 ◦φ

u
T , `〉.

Since ` ∈ L2(M) was arbitrary, we conclude f0 = f0 ◦φ u
T , which completes the proof.
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Chapter 6

The geodesic flow on the Modular
Surface and continued fractions

In this chapter, we are going to explore an interesting and rather pleasing connection between
the geodesic flow on the Modular Surface and the classical continued fraction expansion of real
numbers. This connection was first noted by Artin [1], who used it to construct dense orbits of the
geodesic flow. We will follow the treatement by Caroline Series in [17].

6.1 Background on continued fractions

Let us recall some background on the theory of standard continued fractions. Let us consider a
positive rational number p/q ∈ Q, with p,q ∈ N coprime. By applying the standard Euclidean
algorithm, we obtain finite sequences a0, . . . ,an,r1, . . . ,rn−1 ∈ N with q > r1 > · · ·> rn > 1 such
that

p = a0q+ r1, q = a1r1 + r2, r1 = a2r2 + r3, . . . , rn−2 = an−1rn−1 +1, rn−1 = an ·1.

The second to last remainder is 1 because of the coprimality assumption. If we combine these
equalities together, we can write

p
q
= a0 +

r1

q
= a0 +

1

q
r1

= a0 +
1

a1 +
r2

r1

= a0 +
1

a1 +
1

a2 +
r3

r2

= a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

.

For short, we write p/q = [a0;a1, . . . ,an]. Note that this expression is almost unique, as we could
also write p/q = [a0;a1, . . . ,an−1,1].

The same algorithmic procedure can be carried out for irrational numbers. Let b·c and {·}
denote respectively the integer and fractional part. For any positive real x > 0, we inductively define

a0 = bxc, G1(x) = {1/x}, an = bGn(x)c, Gn+1 = {1/Gn(x)}.

In this way, for any n ∈ N, we can express x as

x = a0 +
1

G1(x)
= a0 +

1

a1 +
1

G2(x)

= a0 +
1

a1 +
1

. . . +
1

an +
1

Gn+1(x)

.
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This procedure stops if and only if x ∈Q. If x ∈ R\Q, we obtain an infinite sequence of positive
integers ai ∈ N, and we write x = [a0;a1,a2, . . . ]. This is called the continued fraction expansion
of x.

The previous discussion can easily be extended to negative reals if we allow a0 to possibly be a
negative integer (while still ai ∈ N for all i≥ 1).

If x ∈ R\Q, the rational numbers pn/qn we get by truncating the continued fraction expansion
at step n, namely

pn

qn
= [a0;a1, . . . ,an]

are called the convergents of x. Convergents satisfy the following properties, see, for example, [11].

Proposition 6.1. Let x = [a0;a1,a2, . . . ], and let pn/qn denote the sequence of its convergents
(written in reduced terms). Then,

1. the matrix
(

pn pn+1
qn qn+1

)
has determinant ±1 for all n≥ 0,

2. for n≥ 1,
pn+1 = an+1 pn + pn−1 and qn+1 = an+1qn +qn−1

where p−1 = 1 and q−1 = 0,

3. for all n≥ 0,
p2n

q2n
≤ p2n+2

q2n+2
≤ x≤ p2n+1

q2n+1
≤ p2n−1

q2n−1
,

with equality on one side or the other if and only if x ∈Q and the sequence terminates,

4. for all n≥ 1, we have |x− pn/qn| ≤ (qnqn+1)
−1 and qn ≥ n.

The continued fraction expansion of a number can be recovered by looking at its itinerary under
the Gauss map G : [0,1)→ [0,1), defined by G(0) = 0 and G(x) = {1/x} for x 6= 0, as follows.
Define

In :=
[ 1

n+1
,
1
n

)
, for n≥ 1;

note that the intervals In form a partition of (0,1). For x ∈ R, let a0 = bxc, and x0 = {x} ∈ [0,1).
Then, an = k if and only if the (n−1)-th iterate Gn−1(x0) of x0 belongs to Ik. The orbit of x0 under
G is infinite if and only if x0 (and hence x) is irrational.

6.2 The Farey tessellation

Given two rational numbers p/q,r/s ∈Q, we define their Farey sum p/q⊕ r/s ∈Q to be

p
q
⊕ r

s
:=

p+ r
q+ s

.

Notice that p/q < p/q⊕ r/s < r/s. We say that p/q and r/s are neighbors if |ps− rq|= 1. It is
not hard to see that, if p/q and r/s are neighbors, then so are p/q and p/q⊕ r/s, and p/q⊕ r/s
and r/s.

For any n ∈ N, we define the n-th Farey Sequence Fn to be the set of all rationals p/q with
|p|, |q| ≤ n arranged in increasing order (with the convention ±∞ = ±1/0). The first few Farey
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Sequences are

F1 : −∞ <−1 < 0 < 1 < ∞,

F2 : −∞ <−2 <−1 <−1
2
< 0 <

1
2
< 1 < 2 < ∞,

F3 : −∞ <−3 <−2 <−3
2
<−1 <−2

3
<−1

2
<−1

3
< 0 <

1
3
<

1
2
<

2
3
< 1 <

3
2
< 2 < 3 < ∞.

One can see that the n-th Farey Sequence is obtained by adding to the (n−1)-th Farey Sequence
all the Farey sums between consecutive terms.

Using the Farey Sequences, we now describe an algorithmic procedure that will result in a
tessellation of the hyperbolic plane H. The procedure goes as follows:

1. draw vertical lines from each n = n/1 ∈ Z,

2. join each pair (n
1 ,

n+1
1 ) by a semicircle with center on R,

3. mark the points n
1⊕

n+1
1 and join them with their neighbors n

1 and n+1
1 by semicircles centered

on R,

4. inductively, if p/q and r/s are neighbors joined by a semicircle, join p/q with p/q⊕ r/s and
p/q⊕ r/s with r/s by semicircles centered on R,

5. continue in this way.

Notice that the lines drawn in this procedure are all geodesics with respect to the hyperbolic metric.
In this way, we subdivide H into infinitely many ideal triangles ∆; that is, hyperbolic triangles
whose vertices lie in the boundary ∂H = R∪ {∞} of H. We call T the resulting subdivision.
Alternatively, one can obtain T by drawing the vertical line through 0 and the joining adjacent
points in each Farey Sequence Fn by a hyperbolic geodesic (with −∞ identified with ∞).

We now show that T is a tessellation of H, namely we show that T is obtained as the images of
a single ideal triangle ∆e under a group of symmetries.

Proposition 6.2. Let ∆e be the ideal triangle with vertices 0,1,∞. For all g ∈ PSL(2,Z), the
triangle g(∆e) is an element of T. Moreover, the triangles in T cover H without overlaps (except at
their boundaries).

Proof. Let us show that all triangles in T are the image of ∆e under some element of PSL(2,Z).
If p/q > r/s are joined by an arc of T, then, by construction, they are neighbors in some Farey
Sequence Fn. Therefore, det( p r

q s ) = 1, so that g = ( p r
q s ) ∈ SL(2,Z). Since g is a hyperbolic

isometry, it maps the triangle ∆e into the hyperbolic triangle ∆g with vertices g.0, g.1 and g.∞.
These are r/s, p/q⊕ r/s and p/q respectively, hence our claim follows.

Let us now verify the second claim. Clearly, all points in H belong to some triangle in T. Since
any triangle in T is ∆g = g(∆e) for some g ∈ PSL(2,Z), in order to check that elements of T do not
overlap it is enough to show that the interior of ∆e and of g(∆e) do not intersect when g 6= e. Let us
first note that the matrix

(
0 1
−1 1

)
maps ∆ to itself, with the effect of rotating its vertices.

Let g =
(

a b
c d

)
∈ SL(2,Z), with a/c > b/d. By translating and rotating ∆e if needed, that is,

up to applying matrices of the form
(

1 m
0 1

)
or
(

0 1
−1 1

)
, we may assume that the side of g(∆e) from

a/c to b/d cuts the imaginary axis. This implies that a/c > 0 > b/d, in particular ad and bc have
opposite signs. Since they are all not 0, we would obtain 1 = |ad−bc|= |ad|+ |bc| ≥ 2, which is
a contradiction.

We have shown that the Farey Tessellation T is invariant under the action of PSL(2,Z). The
following exercise provides some additional properties of T.
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Exercise 6.3. (a) If p/q,r/s ∈Q are neighbors, then they are vertices of some triangle in T.

(b) Every p/q ∈Q is a vertex of a triangle in T.

In §4.2.3, we have introduced the Modular Surface S = PSL(2,Z)\H and its unit tangent bundle
M = PSL(2,Z)\PSL(2,R). We showed that the set T 1(E), where

E = {z ∈H : |z| ≥ 1, |ℜz| ≤ 1/2},

is a fundamental domain for the action of PSL(2,Z). Let us cut E is half at the imaginary axis, and
let us move the left half over using the transformation z 7→ z+1 and glue the two halves together.
This cut-and-paste operation give us a new fundamental domain F , which is a quadrilateral with
vertices i, (1+ i

√
3)/2, 1+ i, and ∞. Once can write

∆e = F ∪g0(F)∪g2
0(F), where g0 =

(
0 1
−1 1

)
is a hyperbolic isometry of order 3 (i.e., g3

0 = e) that stabilizes ∆.

6.3 Cutting sequences and continued fractions

Let γ be an oriented geodesic on T 1H= PSL(2,R) passing through some element g ∈ PSL(2,R),
namely let γ = γg(t) be of the form γg(t) = gexp(tx). For any ∆ ∈ T, let s∆ = γ ∩∆ be the oriented
segment of geodesic contained in ∆. Then, s∆ cuts two sides of ∆ that meet in a vertex. We say that
s∆ has type L if this latter vertex lies on the left of s∆, and we say s∆ has type R if the vertex lies on
its right. There is a little ambiguity if the segment s∆ ends in a vertex of ∆; in which case the type
could be either L or R; we will come back to this in a few moments.

Any geodesic γ = γg(t) as above cuts a sequence of triangles ∆1,∆2, . . . when moving along
future times t ≥ 0, and similarly its “past” cuts a sequence of triangles . . . ,∆−1,∆0. We define the
cutting sequence of γ to be the sequence of symbols

· · ·Ln−2 Rn−1 gLn0 Rn1 · · · ,

where the i-th symbol is L or R if the type of the segment s∆i = γ ∩∆i is L or R respectively. The
symbol g in the sequence is there only to denote the starting point of the geodesic. In other words,
the cutting sequence above means that the future geodesic from g intersects n0 triangles of T in
segments of type L, then n1 triangles in segments of type R, and so on. A similar description holds
for the past of the geodesic, ending in g.

For any geodesic γ as above, let

γ±∞ := lim
t→±∞

γg(t) ∈ R∪{∞}

denote the endpoints of γ . The cutting sequence of γ is finite on the right if and only if γ+∞ a vertex
of a triangle of T, in which case the cutting sequence could end with either Ln j+1 or with Ln j R, or
similarly with either Rn j+1 or with Rn j L. Analogously, it is finite on the left if γ−∞ is a vertex of a
triangle in T.

By Proposition 6.2, any element ` ∈ Γ = PSL(2,Z) preserves T and moreover ` preserve
orientation. Therefore, the cutting sequence of the geodesic γg(t) must coincide with the cutting
sequence of the geodesic γ`(g)(t). This implies that, if γ is a geodesic on the Modular Surface S,
then its cutting sequence is well-defined: the cutting sequence of any two lifts of γ to T 1H must
coincide, up to a choice of the starting point.
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Exercise 6.4. Let γ be a geodesic in S. Show that there exists a lift γ = γg(t) on tT 1H that satisfies
the following properties

(A) the starting point g is on the imaginary axis (i.e., g.i ∈ iR>0), 0 < |γ−∞| ≤ 1, |γ+∞| ≥ 1, and
γ−∞ and γ+∞ have opposite signs.

The following result makes precise the connection between geodesics on M and continued
fractions.

Theorem 6.5. Let γ be a geodesic on M = T 1(S), and let γg(t) be a lift of γ which satisfies (A).

1. If · · ·Ln−2 Rn−1 gLn0 Rn1 · · · is the cutting sequence of γg(t), then

γ+∞ = [n0;n1, . . . ], and
−1
γ−∞

= [n−1;n−2, . . . ].

2. If · · ·Rn−2 Ln−1 gRn0 Ln1 · · · is the cutting sequence of γg(t), then

γ+∞ =−[n0;n1, . . . ], and
1

γ−∞

= [n−1;n−2, . . . ].

Proof. Let us assume that we are in the first case, namely the cutting sequence of γg(t) is
· · ·Ln−2 Rn−1 gLn0 Rn1 · · · ; the other case is analogous. We write γ+∞ = [a0;a1,a2, . . . ], and we
want to show that ai = ni.

Since the cutting sequence after g.i∈ iR>0 starts with Ln0 R, this implies that n0 < γ+∞ ≤ n0+1,
and the equality γ+∞ = n0 +1 holds if and only if the cutting sequence stops. In this latter case,
the claim is proved, hence let us assume it does not terminate at this point. Therefore, we get
n0 = bγ+∞c= a0.

Call x1 the point on γ that lies on the boundary of the triangle ∆1 := τn0∆e and where the
change from L to R in the cutting sequence occurs. We now make use of the distinguished elements
τ =

(
1 1
0 1

)
and σ =

(
0 −1
1 0

)
of SL(2,Z), as we denoted them in §4.2.3. By definition, the element

τ−n0x1 belongs to the imaginary axis. The geodesic τ−n0(γ) still projects onto γ and, up to a time
reparametrization, can be identified with the geodesic γτ−n0 x1

(t) starting at τ−n0x1 and ending at
γ+∞−n0 ∈ (0,1). The cutting sequence of this new lift of γ starts with τ−n0x1Rn1 · · · .

We now apply σ . Call g1 := στ−n0x1 and γ1 = στ−n0(γ) the new geodesic (which, again, is a
lift of γ). Since the imaginary axis is fixed by σ , the starting point g1 still belongs to iR>0; on the
other hand, the endpoint of γ1 is now

στ
−n0(γ+∞) = σ(γ+∞−n0) =−1/(γ+∞−n0)<−1.

Similarly, the starting point στ−n0(γ−∞) ∈ (0,1). This implies that γ1 is a lift of γ which satisfies
(A). Since the cutting sequence of γ1 starts with Rn1L, as before, we deduce that −n1− 1 ≤
στ−n0(γ+∞)<−n1, with equality if and only if the cutting sequence terminates (in which case the
claim is proved). If it does not terminate, we deduce

n1 = b−στ
−n0(γ+∞) = 1/(γ+∞−a0) = a1.

At this point, we apply στn1 to γ1, and we obtain a new geodesic γ2 = στn1γ1 = στn1στ−n0γ ,
which projects onto γ , and satisfies (A) with endpoint στn1στ−n0γ+∞ ≥ 1 and starting point
στn1στ−n0γ−∞ ∈ [−1,0). The argument repeats, and hence the claim is proved for γ+∞.

To study the starting point γ−∞, one applies the map σ and considers the geodesic σ(γ)
parametrized with negative times. In this way, the starting point is σ(γ+∞, the endpoint is σ(γ−∞) =
−1/γ−∞, and the cutting sequence is · · ·Rn1 Ln0 σ(g)Rn−1 Ln−2 · · · . The first part of the argument
applies and yields the result −1/γ−∞ = [n−1;n−2, . . . ].
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Remark 6.6. 1. The endpoint γ+∞ is independent of γ−∞ and on the part of the cutting sequence
that precedes g, and vice-versa.

2. The ambiguity in the cutting sequence that arises if the geodesic ends in a vertex of a triangle
of T corresponds to the ambiguity in the continued fraction expansion of rational numbers
that we mentioned in §6.1.

The remarkable connection described in Theorem 6.5 betweend geodesics on M and continued
fractions helps in both ways: on one hand, one could use properties of continued fractions to deduce
properties of geodesics on M; on the other hand, it is possible to recover simple and streamlined
proofs of facts on continued fractions from geometric considerations or from facts on the geodesic
flow. We give here a couple of simple examples of this phenomenon, but the story goes on well
beyond what we mention here. The interested reader can find more material for example in [17]
and in further, more recent works.

We can use the properties of the golden mean (1+
√

5)/2 = [1;1,1, . . . ] to construct a periodic
geodesic on M. More in general, as the next lemma shows, any real number with a periodic
continued fraction expansion gives rise to a periodic geodesic on M.

Lemma 6.7. Let α > 1 be a real number with a periodic continued fraction expansion. Then, the
geodesic γ in T1H with endpoints γ+∞ = α and γ−∞ =−1/α projects onto a periodic geodesic on
M.

Proof. Up to repeating the period, we can write α = [a0;a1, . . . ,a2r+1] be a periodic continued
fraction expansion of α with an even period. Consider the geodesic γ on M with endpoints γ+∞ = α

and γ−∞ = β , where −1/β = [a2r+1;a2r, . . . ,a−1]. Then, γ has a periodic cutting sequence

· · ·La2r Ra2r+1 gLa0 Ra1 · · ·La2r Ra2r+1 La0 · · ·

which is fixed by the element

` := στ
a2r+1στ

−a2r · · ·στ
a1στ

−a0 ∈ SL(2,Z).

This implies that the geodesic γ is fixed by `, i.e., `(γ) = γ . It follows that the projection on M is
periodic.

On the other hand, we can give a simple proof of the following fact on continued fractions
using what we have seen so far. We say that two numbers α,β ∈ R, with α = [a0;a1, . . . ] and
β = [b0;b1, . . . ], have the same tail if there exists k, l ∈ N such that ak+n = bl+n for all n ∈ N; we
say that they have the same tails mod 2 if k+ l is even.

Lemma 6.8. Two reals α and β have the same tails mod 2 if and only if there exists ` ∈ SL(2,Z)
such that `.α = β .

Proof. We leave as an exercise to the reader to show the left-to-right implication.
We start by verifying the following claim: if two geodesic have the same endpoint, then their

cutting sequences eventually coincide. Indeed, if two geodesic have the same endpoint, we can
find a side of a triangle in T which is cut by both of them. By applying an element of SL(2,Z), we
can map that side to the imaginary axis, hence getting two geodesics starting on the imaginary axis
with the same endpoint. Applying this element of SL(2,Z) had the effect of shifting the cutting
sequences of the original geodesics. On the other hand, these two new geodesics, by Theorem 6.5,
have the same future cutting sequence, hence the claim is proved.

Let us assume that there exists ` ∈ SL(2,Z) such that `.α = β . Up to applying σ and some
appropriate power of τ , we can assume that both α,β > 1. Choose ω ∈ (−1,1), and consider
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the geodesics γα , γβ with starting from ω and with endpoints α and β respectively. Now, γα and
`(γα) have the same cutting sequence, up to a shift in the symbols (that is, up to choosing the
starting point). Moreover, by the previous claim, the cutting sequences of `(γα) and γβ eventually
coincide, since they have the same endpoint. Moreover, they must have the same tails mod 2 since
the alternating symbols L and R have to match.

Exercise 6.9. Prove that, if α,β ∈R have the same tails mod 2, then there exists ` ∈ SL(2,Z) such
that `.α = β .

Let us finish this chapter by giving a geometric interpretations of the sequence of convergents
of a real number α .

Lemma 6.10. Let s0,s1, . . . be the sides of the triangles in T which mark the changes in the cutting
sequence of γg(t) for t > 0 from L to R and vice-versa. Then, for n ≥ 0, the endpoints of sn are
pn/qn and pn−1/qn−1.

Proof. Let · · ·Ln−2 Rn−1 gLn0 Rn1 · · · be the cutting sequence of γg(t), and let us look at positive
times t > 0. As in the proof of Theorem 6.5, the endpoints of the side s0 are a0 and ∞. Define, as
in Proposition 6.1, p−1 = 1 and q−1 = 0, so that ∞ = p−1/q−1 and a0 = p0/q0. After the side s0,
there are a1 segments of type R. Thus, the left endpoint of s1 is still a0 = p0/q0; however, to find
the right endpoint, we need to perform the Farey addition n1 times, and hence we find

∞⊕ p0/q0⊕·· ·⊕ p0/q0 =
p−1 +n1 p0

q−1 +n1q0
=

p1

q1
,

where we have used Proposition 6.1-(2). We now continue in the same way: the right endpoint of
s2 is the same as s1, namely p1

q1
, whereas to find the left endpoint we need to perform n2 times the

Farey addition, since there are n2 segments labeled L. We then deduce that the left endpoint of s2 is

p0

q0
⊕ p1

q1
⊕·· ·⊕ p1

q1
=

p0 +n2 p1

q0 +n2q1
=

p2

q2
.

The proof carries on for all n≥ 1.
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Chapter 7

Further topics

7.1 Invariant measures and Ratner’s Theorems

7.1.1 The horocycle flow on compact quotients

7.1.2 Ratner’s Theorem on measure classification

7.2 Quantitative properties

7.2.1 Quantitative mixing

7.2.2 Quantitative unique ergodicity
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