MEASURE AND INTEGRATION THEORY—VO 250076 MOCK EXAM

The duration of the exam is **2 hours and 30 minutes**.

The exam consists of **5 exercises**.

The total score is **100 points**. The minimum score to pass the exam is **50 points**. The marks will be assigned using the following conversion:

50-59 points \longrightarrow mark: 4. 60-69 points \longrightarrow mark: 3. 70-84 points \longrightarrow mark: 2. 85-100 points \longrightarrow mark: 1.

Please turn the page only when instructed to do so.

Exercise 1. Let (X, \mathscr{A}, μ) be a measure space and let $f_n, f : X \to \mathbb{R}$, for $n \in \mathbb{N}$, be functions. *Prove or disprove the following statements.*

- (1) If f_n → f pointwise and if the functions f_n are measurable for all n ∈ N, then f is measurable.
 [5 points]
- (2) If f_n → f pointwise and if the functions f_n are integrable for all n ∈ N, then f is integrable.
 [5 points]
- (3) If f_n → f pointwise and if the functions f_n are measurable and there exists C ≥ 0 such that ∫ |f_n|dµ ≤ C for all n ∈ N, then f is integrable and ∫ |f|dµ ≤ C.
 [6 points]

Exercise 2. Let (X, \mathscr{A}, μ) be a measure space with $\mu(X) < \infty$, and let $f : X \to \mathbb{R}$ be a measurable *function*.

- (1) Prove that x → |cos(f(x))|ⁿ is a measurable function for all n ∈ N and prove that the set A = {x ∈ X : f(x) ∈ πZ} is measurable.
 [8 points]
- (2) Calculate, justifying all steps, the limit

$$\lim_{n\to\infty}\int |\cos(f(x))|^n\,\mathrm{d}\mu.$$

[8 points]

(3) Show that, in general, the result in the previous part is false if µ(X) = ∞.
 [4 points]

Exercise 3. Let (X, \mathscr{A}, μ) be a measure space with $\mu(X) < \infty$, and let $f_n, f : X \to \mathbb{R}$, for $n \in \mathbb{N}$, be measurable functions.

- (1) Give the precise definitions of the following:
 - f_n converges to $f \mu$ -almost everywhere.
 - f_n converges to f in measure.
 - f_n converges to f in L^2 .

[6 points]

(2) Prove that f_n converges to $f \mu$ -almost everywhere if and only if

$$\mu\left(\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n} \{x\in X : |f_k(x)-f(x)|\geq \varepsilon\}\right) = 0 \quad \text{for every } \varepsilon > 0.$$

[6 points]

(3) Prove that f_n converges to $f \mu$ -almost everywhere if and only if the sequence of functions

$$g_n = \sup_{k \ge n} |f_k - f|$$

converges to 0 *in measure.* [6 points]

(4) Show that, in general, the result in the previous part is false if µ(X) = ∞.
 [6 points]

The script continues on the next page.

Exercise 4. Let m_2 denote the Lebesgue measure on $Q = [0,1]^2$ (with the Borel σ -algebra).

- (1) For any $p \in [1,\infty]$, define the p-norm $\|\cdot\|_p$ and the spaces $\mathcal{L}^p(Q,m_2)$ and $L^p(Q,m_2)$. [10 points]
- (2) Consider the function $f: Q \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 0 & \text{if } x = y, \\ \frac{1}{\sqrt{|x-y|}} & \text{if } x \neq y. \end{cases}$$

Determine for which $p \in [1,\infty]$ the function f belongs to $\mathcal{L}^p(Q,m_2)$ and, for those p, calculate $||f||_p$. [10 points]

Exercise 5. Let μ be a signed measure on the measurable space (X, \mathscr{A}) .

- (1) Define what it means for $E \in \mathscr{A}$ to be a negative set, a positive set, and a null-set for μ . [4 points]
- (2) *State the Hahn Decomposition Theorem and the Jordan Decomposition Theorem.* [10 points]
- (3) Give two equivalent definitions of the total variation of μ.[6 points]