Ergodic and mixing properties of horocycle flows and their time-changes

Simons Semester - Lecture 1

Davide Ravotti
University of Vienna

22 May 2023

Plan of the course

1. The setting: $\mathrm{SL}_{2}(\mathbb{R})$, the horocycle flow, and many important objects.
2. Ergodicity: quantitative results on horocycle ergodic averages.
3. Mixing: the "mixing via shearing" method and the decay of correlations.
4. Time-changes: definition and basic facts; ergodicity and mixing.
5. Rigidity: Ratner's rigidity result.
6. Beyond $\mathrm{SL}_{2}(\mathbb{R})$: time-changes and other perturbations in other settings.

Plan for today

In the first part, we will introduce

- the group $G=\mathrm{SL}_{2}(\mathbb{R})$ and its Lie algebra,
- the homogeneous flows on its quotients,
- the Haar measure.

In the second part, we will define

- the Adjoint action and the Lie brackets,
- the Killing form and the action of G on the hyperbolic plane,
- the Casimir operator.

Homogeneous flows on $\mathrm{SL}_{2}(\mathbb{R})$

The group $\mathrm{SL}_{2}(\mathbb{R})$

$$
\begin{aligned}
& G:=\operatorname{SL}_{2}(\mathbb{R})=\left\{\mathbf{g}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}):\right. \\
& \qquad a, b, c, d \in \mathbb{R}, a d-b c=1\}
\end{aligned}
$$

We think of G as an embedded submanifold of \mathbb{R}^{4}.

$$
\mathrm{PSL}_{2}(\mathbb{R})=\mathrm{SL}_{2}(\mathbb{R}) /\{ \pm \mathbf{e}\}, \quad \text { and } \quad \mathbf{e}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

The group $\mathrm{SL}_{2}(\mathbb{R})$

Tangent spaces

$$
\mathfrak{g}:=T_{\mathrm{e}} G=\left\{\gamma^{\prime}(0) \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}):\right.
$$

$\gamma:(-\varepsilon, \varepsilon) \rightarrow G$ is a smooth curve and $\gamma(0)=\mathbf{e}$

For example,

$$
\begin{aligned}
\gamma_{1}(t)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) & \Rightarrow \mathbf{u}:=\gamma_{1}^{\prime}(0)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \in \mathfrak{g}, \\
\gamma_{2}(t)=\left(\begin{array}{cc}
e^{t / 2} & 0 \\
0 & e^{-t / 2}
\end{array}\right) & \Rightarrow \mathbf{x}:=\gamma_{2}^{\prime}(0)=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right) \in \mathfrak{g}, \\
\gamma_{3}(t)=\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right) & \Rightarrow \mathbf{v}:=\gamma_{3}^{\prime}(0)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \in \mathfrak{g} .
\end{aligned}
$$

Tangent spaces

Lemma

$$
\mathfrak{g}=\left\{\mathbf{g} \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}): \operatorname{tr}(\mathbf{g})=0\right\}
$$

Proof (sketch).

- \mathfrak{g} is a vector space: let γ, η be such that $\gamma^{\prime}(0), \eta^{\prime}(0) \in \mathfrak{g}$ and let $a \in \mathbb{R}$; then

$$
\begin{aligned}
& (\gamma \cdot \eta)^{\prime}(0)=\gamma^{\prime}(0) \cdot \eta(0)+\gamma(0) \cdot \eta^{\prime}(0)=\gamma^{\prime}(0)+\eta^{\prime}(0) \\
& \left(\gamma_{a}\right)^{\prime}(0)=a \cdot \gamma^{\prime}(0), \quad \text { where } \quad \gamma_{a}(t)=\gamma(a t) .
\end{aligned}
$$

- $\langle\mathbf{u}, \mathbf{x}, \mathbf{v}\rangle=\{\operatorname{tr}(\mathbf{g})=0\} \subseteq \mathfrak{g}$.
- if $t \mapsto \gamma(t) \in G$ is a smooth curve with $\gamma(0)=\mathbf{e}$,

$$
1=\operatorname{det}(\gamma(t)) \quad \Rightarrow \quad 0=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{det}(\gamma(t))=\operatorname{tr}\left(\gamma^{\prime}(0)\right) .
$$

Tangent spaces

More in general, for any $\mathbf{g} \in G$,

$$
T_{\mathbf{g}} G=\mathbf{g} \cdot \mathfrak{g}=\left\{\mathbf{g} \mathbf{w} \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}): \mathbf{w} \in \mathfrak{g}\right\} \simeq \mathfrak{g} .
$$

Any $\mathbf{w} \in \mathfrak{g}$ can be identified with a smooth vector field W, where

$$
W(\mathbf{g})=\mathbf{g} \mathbf{w} \in T_{\mathbf{g}} G .
$$

Matrix exponential

For any $\mathbf{w} \in \mathfrak{g}$, define

$$
\exp (\mathbf{w})=\sum_{k=0}^{\infty} \frac{\mathbf{w}^{k}}{k!}=\mathbf{e}+\mathbf{w}+\frac{1}{2} \mathbf{w}^{2}+\cdots
$$

Since $\operatorname{det}(\exp (\mathbf{w}))=e^{\operatorname{tr}(\mathbf{w})}$, we have $\exp (\mathfrak{g}) \subseteq G$.

$$
\begin{aligned}
t \mathbf{u}=\left(\begin{array}{ll}
0 & t \\
0 & 0
\end{array}\right) & \Rightarrow \quad \exp (t \mathbf{u})=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \\
t \mathbf{x}=\left(\begin{array}{cc}
t / 2 & 0 \\
0 & -t / 2
\end{array}\right) & \Rightarrow \quad \exp (t \mathbf{x})=\left(\begin{array}{cc}
e^{t / 2} & 0 \\
0 & e^{-t / 2}
\end{array}\right), \\
t \mathbf{r}=\left(\begin{array}{cc}
0 & -t / 2 \\
t / 2 & 0
\end{array}\right) & \Rightarrow \quad \exp (t \mathbf{r})=\left(\begin{array}{cc}
\cos (t / 2) & -\sin (t / 2) \\
\sin (t / 2) & \cos (t / 2)
\end{array}\right) .
\end{aligned}
$$

Matrix exponential

For $\mathbf{w} \in \mathfrak{g}$ we define the flow $\left(\varphi_{t}^{\mathbf{w}}\right)_{t \in \mathbb{R}}$ on G by

$$
\varphi_{t}^{\mathbf{w}}(\mathbf{g})=\mathbf{g} \exp (t \mathbf{w})
$$

The flow $\left(\varphi_{t}^{\mathbf{w}}\right)_{t \in \mathbb{R}}$ is generated by the vector field W :

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \varphi_{t}^{\mathbf{w}}(\mathbf{g})=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \mathbf{g} \exp (t \mathbf{w})=\mathbf{g} \mathbf{w}=W(\mathbf{g})
$$

We identify W with the derivation

$$
W f(\mathbf{g})=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} f \circ \varphi_{t}^{\mathrm{w}}(\mathbf{g}), \quad \text { for } f \in \mathscr{C}^{1}(G)
$$

Homogeneous flows on quotients

Lemma

For any discrete subgroup $\Gamma \leq G$, the quotient $M=\Gamma \backslash G$ is a smooth manifold.

Proof (sketch). Since Γ is discrete, it acts properly discontinuously on G and the projection $G \rightarrow M$ is a covering map Then, M inherits the smooth structure from G.

The flow $\left(\varphi_{t}^{\mathbf{w}}\right)_{t \in \mathbb{R}}$ generated by $\mathbf{w} \in \mathfrak{g}$ is well-defined on M : for $\Gamma \mathbf{g} \in M$, we let

$$
\varphi_{t}^{\mathbf{w}}(\Gamma \mathbf{g})=\lceil\mathbf{g} \exp (t \mathbf{w})
$$

We will be interested in quotients M which are compact.

The Haar measure

- Recall that, for any $\mathbf{g} \in G$, we can identify $T_{\mathbf{g}} G=\{\mathbf{g} \mathbf{w}: \mathbf{w} \in \mathfrak{g}\}$ with \mathfrak{g}.
- Fix the basis $\mathbf{u}, \mathbf{x}, \mathbf{v}$ of \mathfrak{g} as above and identify all $T_{\mathbf{g}} G$ with \mathbb{R}^{3}.
- Given $\mathbf{g} \in G$, define $\omega_{\mathbf{g}}$ by

$$
\omega_{\mathbf{g}}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
x_{1} & x_{2} & x_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)
$$

for any $\mathbf{w}_{i}=\left(u_{i}, x_{i}, v_{i}\right) \in T_{\mathbf{g}} G=\mathbb{R}^{3}, i=1,2,3$.

The Haar measure

We define a measure vol on G by

$$
\operatorname{vol}(f)=\int_{G} f|\omega|
$$

for any continuous function $f: G \rightarrow \mathbb{R}$ with compact support.

Proposition

The measure vol satisfies the following properties:

- it is well-defined on any quotient $M=\Gamma \backslash G$ for any discrete subgroup $\Gamma \leq G$.
- it is invariant under $\left(\varphi_{t}^{\mathbf{w}}\right)_{t \in \mathbb{R}}$ for any $\mathbf{w} \in \mathfrak{g}$.
- up to scalar multiples, it is the unique measure with these properties.

Lie brackets, the Killing form, and the Casimir operator

Adjoint and Lie brackets

Recall that for any two matrices \mathbf{w}, \mathbf{z} we have $\operatorname{tr}(\mathbf{w} \mathbf{z})=\operatorname{tr}(\mathbf{z w})$.
Observations

- G acts on \mathfrak{g} by conjugation: for any $\mathbf{g} \in G$, the map

$$
\operatorname{Ad}(\mathbf{g}): \mathbf{w} \mapsto \mathbf{g}^{-1} \mathbf{w} \mathbf{g}
$$

is a linear automorphism of \mathfrak{g}.

- \mathfrak{g} is closed under the bracket operation defined by

$$
[\mathbf{w}, \mathbf{z}]:=\mathbf{w} \mathbf{z}-\mathbf{z w} .
$$

Adjoint and Lie brackets

If $\mathbf{g}=\exp (t \mathbf{w})$, then, under the identification $\mathfrak{g} \simeq T_{\mathbf{g}} G$,

$$
\operatorname{Ad}(\exp (t \mathbf{w})): \mathfrak{g} \rightarrow \mathfrak{g} \quad \simeq \quad D \varphi_{t}^{\mathbf{w}}: \mathfrak{g} \rightarrow T_{\mathbf{g}} G
$$

Moreover,

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{Ad}(\exp (t \mathbf{w}))(\mathbf{z}) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \exp (-t \mathbf{w}) \mathbf{z} \exp (t \mathbf{w})=-\mathbf{w} \mathbf{z}+\mathbf{z w} \\
& =-[\mathbf{w}, \mathbf{z}]
\end{aligned}
$$

in other words

$$
\mathfrak{a} \mathfrak{d}_{\mathbf{w}}:=[\mathbf{w}, \cdot]=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} D \varphi_{-t}^{\mathbf{w}}=\mathscr{L}_{W} .
$$

Adjoint and Lie brackets

Fix the basis

$$
\mathbf{r}=\left(\begin{array}{cc}
0 & -1 / 2 \\
1 / 2 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right) \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 / 2 & 0
\end{array}\right)
$$

and identify \mathfrak{g} with \mathbb{R}^{3}.
We compute the 3×3 matrices representing the linear endomorphisms $\mathfrak{a d _ { r }}$, $\mathfrak{a} \mathfrak{d}_{\mathrm{x}}$, and $\mathfrak{a} \mathfrak{d}_{\mathbf{y}}$:
$\mathfrak{a} \mathfrak{d}_{\mathbf{r}}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & 0\end{array}\right), \quad \mathfrak{a d}_{\mathbf{x}}=\left(\begin{array}{ccc}0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0\end{array}\right), \quad \mathfrak{a} \mathfrak{d}_{\mathbf{y}}=\left(\begin{array}{ccc}0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

The Killing Form

Definition

The Killing Form is the bilinear form on \mathfrak{g} defined by

$$
\mathrm{B}(\mathbf{w}, \mathbf{z})=2 \operatorname{tr}\left(\mathfrak{a d}_{\mathbf{w}} \circ \mathfrak{a} \mathfrak{d}_{\mathbf{z}}\right) .
$$

With respect to the basis $\{\mathbf{r}, \mathbf{x}, \mathbf{y}\}$, we can write

$$
\mathrm{B}(\mathbf{w}, \mathbf{z})=\mathbf{w}^{t}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{z}
$$

in particular it is non-degenerate.

The Killing Form

Recall that G acts on \mathfrak{g} by conjugation: $\operatorname{Ad}(g): \mathbf{w} \mapsto \mathbf{g}^{-1} \mathbf{w} \mathbf{g}$.

Lemma

The Killing Form is invariant by the action of G, namely for all $\mathbf{g} \in G$ and for all $\mathbf{w}, \mathbf{z} \in \mathfrak{g}$ we have

$$
\mathrm{B}(\operatorname{Ad}(\mathbf{g}) \mathbf{w}, \operatorname{Ad}(\mathbf{g}) \mathbf{z})=\mathrm{B}(\mathbf{w}, \mathbf{z}) .
$$

Proof (sketch).

- By direct computation, verify that

$$
\mathfrak{a d}_{\mathbf{g}^{-1} \mathbf{w} \mathbf{g}}=\operatorname{Ad}(\mathbf{g}) \circ \mathfrak{a} \mathfrak{d}_{\mathbf{w}} \circ \operatorname{Ad}(\mathbf{g})^{-1}
$$

- By invariance of the trace under conjugation,

$$
\begin{aligned}
& \mathrm{B}(\operatorname{Ad}(\mathbf{g}) \mathbf{w}, \operatorname{Ad}(\mathbf{g}) \mathbf{z})=2 \operatorname{tr}\left(\mathfrak{a d}_{\mathbf{g}^{-1} \mathbf{w}} \circ \mathfrak{a d}_{\mathbf{g}^{-1} \mathbf{z g}}\right) \\
& \quad=2 \operatorname{tr}\left(\operatorname{Ad}(\mathbf{g}) \circ \mathfrak{a d}_{\mathbf{w}} \circ \mathfrak{a d}_{\mathbf{z}} \circ \operatorname{Ad}(\mathbf{g})^{-1}\right)=2 \operatorname{tr}\left(\mathfrak{a d}_{\mathbf{w}} \circ \mathfrak{a} \mathfrak{d}_{\mathbf{z}}\right)=\mathrm{B}(\mathbf{w}, \mathbf{z})
\end{aligned}
$$

The hyperbolic plane

The set

$$
\begin{aligned}
\mathscr{H} & :=\left\{\mathbf{z}=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}: \mathrm{B}(\mathbf{z}, \mathbf{z})=-1, z_{1}>0\right\} \\
& =\left\{\mathbf{z}=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}: z_{1}^{2}-z_{2}^{2}-z_{3}^{2}=1, z_{1}>0\right\} .
\end{aligned}
$$

equipped with the distance

$$
d_{\mathscr{H}}(\mathbf{w}, \mathbf{z})=\operatorname{arcosh}(-\mathrm{B}(\mathbf{w}, \mathbf{z}))=\operatorname{arcosh}\left(w_{1} z_{1}-w_{2} z_{2}-w_{3} z_{3}\right)
$$

is the hyperboloid model of the hyperbolic plane.

The hyperbolic plane

Action of G on the hyperbolic plane

Proposition

- G and $\mathrm{PSL}_{2}(\mathbb{R})=G /\{ \pm \mathbf{e}\}$ act on \mathscr{H} by isometries.
- The action is transitive.
- The stabilizer of $\mathbf{r}=(1,0,0)$ is $\mathrm{SO}(2)$.

Proof (sketch).

- Since G is connected, it acts on \mathscr{H}; moreover, the action of $-\mathbf{e}$ is trivial. Since $\operatorname{Ad}(\mathbf{g})$ preserves B , it is an isometry for the hyperbolic distance $d_{\mathscr{H}}$.
- Given $(r, x, y) \in \mathscr{H}$, let $\mathbf{g}=\left(\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\sqrt{r+y} & 0 \\ 0 & 1 / \sqrt{r+y}\end{array}\right)$. Then, $\operatorname{Ad}(\mathbf{g}) \mathbf{r}=(r, x, y)$.
- Follows from the fact that $\mathrm{SO}(2)=\exp (\mathbb{R} \mathbf{r})$.

Action of G on the hyperbolic plane

We proved that $G / S O(2)$ can be identified with \mathscr{H}.
One can prove that:

- $\mathrm{PSL}_{2}(\mathbb{R})=G /\{ \pm \mathbf{e}\}$ can be identified with the unit tangent bundle of \mathscr{H}.
- $M=\Gamma \backslash G$ can be identified with (possibly, a double cover of) the unit tangent bundle of $S=\Gamma \backslash \mathscr{H}$.
- The flow $\left(\varphi_{t}^{\mathbf{x}}\right)_{t \in \mathbb{R}}$ on M is the geodesic flow and $\left(\varphi_{t}^{\mathbf{u}}\right)_{t \in \mathbb{R}}$ is the stable horocycle flow.

The Casimir operator

Recall that

- the Killing form B is non degenerate. The dual basis of $\{\mathbf{r}, \mathbf{x}, \mathbf{y}\}$ with respect to B is $\{-\mathbf{r}, \mathbf{x}, \mathbf{y}\}$.
- the elements $\mathbf{r}, \mathbf{x}, \mathbf{y} \in \mathfrak{g}$ are identified with vector fields R, X, Y on G (and on its quotients).

The second order differential operator

$$
\square=R^{2}-X^{2}-Y^{2}
$$

is called the Casimir operator.

The Casimir operator

Proposition

- The definition of the Casimir operator does not depend of the choice of the basis $\{\mathbf{r}, \mathbf{x}, \mathbf{y}\}$.
- The Casimir operator commutes with any vector field W defined by $\mathbf{w} \in \mathfrak{g}$.
- On \mathscr{C}^{2}-functions f defined on $\mathscr{H}=G / S O(2)$ (namely, for which $R f=0$), it coincides with minus the hyperbolic Laplacian.

Proof (sketch).

- Let $\left\{\mathbf{w}_{i}\right\}$ and $\left\{\mathbf{z}_{j}\right\}$ be two basis of \mathfrak{g}, and let $\left\{\widehat{\mathbf{w}}_{i}\right\}$ and $\left\{\widehat{\mathbf{z}}_{j}\right\}$ be their dual.
- If $\mathbf{w}_{i}=a_{i j} \mathbf{z}_{j}$, then $\widehat{\mathbf{z}_{i}}=a_{j i} \widehat{\mathbf{w}_{j}}$.
- Thus, $\mathbf{w}_{i} \widehat{\mathbf{w}_{i}}=a_{i j} \mathbf{z}_{j} \widehat{\mathbf{W}_{i}}=\mathbf{z}_{j} \widehat{\mathbf{z}_{j}}$.

The Casimir operator

Proof (sketch - cont'd).

- Need to prove that $\square \mathbf{w}-\mathbf{w} \square=0$. Enough to consider $\mathbf{w} \in\{\mathbf{r}, \mathbf{x}, \mathbf{y}\}$.
- Direct computation in each case. E.g., for $\mathbf{w}=\mathbf{r}$,

$$
\begin{aligned}
\square \mathbf{r}-\mathbf{r} \square & =-\mathbf{x}^{2} \mathbf{r}-\mathbf{y}^{2} \mathbf{r}+\mathbf{r} \mathbf{x}^{2}+\mathbf{r} \mathbf{y}^{2} \\
& =-\mathbf{x}[\mathbf{x}, \mathbf{r}]-\mathbf{y}[\mathbf{y}, \mathbf{r}]+[\mathbf{r}, \mathbf{x}] \mathbf{x}+[\mathbf{r}, \mathbf{y}] \mathbf{y} \\
& =\frac{1}{2} \mathbf{x y}-\frac{1}{2} \mathbf{y} \mathbf{x}+\frac{1}{2} \mathbf{y} \mathbf{x}-\frac{1}{2} \mathbf{x y}=0 .
\end{aligned}
$$

The Casimir operator

Proof (sketch - cont'd).

- The hyperbolic metric on \mathscr{H} is given by the restriction of the Killing form B.
- The vector fields X and Y on \mathscr{H} are orthonormal.
- For any \mathscr{C}^{2}-function f,

$$
\Delta_{\mathscr{H}} f=\operatorname{div}(\nabla f)=\left(X^{2}+Y^{2}\right) f .
$$

Summary

Summary

- For any discrete subgroup $\Gamma \leq G$, the quotient $M=\Gamma \backslash G$ is a smooth manifold.
- Any $\mathbf{w} \in\left\{\mathbf{g} \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}): \operatorname{tr}(\mathbf{g})=0\right\}$ defines a smooth vector field on M and the flow $\left(\varphi_{t}^{\mathbf{w}}\right)_{t \in \mathbb{R}}$ it generated is given by

$$
\varphi_{t}^{\mathbf{w}}:\lceil\mathbf{g} \mapsto \Gamma \mathbf{g} \exp (t \mathbf{w})
$$

- Any such flow preserves a smooth measure μ called the Haar measure.
- We computed $D \varphi_{t}^{\mathbf{w}}=\operatorname{Ad}(\exp (t \mathbf{w}))$ and $\mathscr{L}_{W}=\mathfrak{a} \mathfrak{d}_{\mathbf{w}}$.
- We introduced a second order differential operator \square which "extends" the hyperbolic Laplacian.

