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Plan for today

Today we will focus on the ergodic properties of the horocycle flows. We
will study

the asymptotics of ergodic averages of smooth functions,
a temporal limit theorem.
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Asymptotics of ergodic averages

Davide Ravotti (University of Vienna) Horocycle flows and their time-changes 25 May 2023 3 / 28



The setting

G = SL2(R) and Γ≤ G is discrete,
M = Γ\G is compact,
vol is the Haar measure on M, normalized so that vol(M) = 1.

u =
(
0 1
0 0

)
∈ g generates the horocycle flow

ht = ϕ
u
t : Γg 7→ Γg

(
1 t
0 1

)
.

x =
(
1/2 0
0 −1/2

)
∈ g generates the geodesic flow

ϕ
x
t : Γg 7→ Γg

(
e t

2 0
0 e− t

2

)
.
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Unique ergodicity

Let f ∈ C (M). We want to study

Af (p, t) := 1
t

∫ t

0
f ◦hr (p)dr .

Theorem (Furstenberg 1973)
The horocycle flow on M is uniquely ergodic, namely

lim
t→∞

∣∣∣∣Af (p, t)−
∫

M
f dvol

∣∣∣∣= 0 uniformly in p ∈M.

Proof. See Jon Chaika’s course.

Can we say how fast Af (p, t)→
∫

M f dvol?
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The commutation relation

We compute(
1 r
0 1

)(
e t

2 0
0 e− t

2

)
=
(
e t

2 re− t
2

0 e− t
2

)
=
(
e t

2 0
0 e− t

2

)(
1 e−tr
0 1

)
,

which means

ϕ
x
t ◦hr (p) = he−t r ◦ϕ

x
t (p) for any p ∈M.

Equivalently,
Dϕx

t (u)' Ad(exp(tx))(u) = e−tu,
d
dt
∣∣
t=0Dϕx

t (u) =−LX (U) =−[x,u] =−u.
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The commutation relation
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Ergodic averages

Let f ∈ C (M). We look at

Af (p,et) := 1
et

∫ et

0
f ◦hr (p)dr .

Since
hr (p) = hr ◦ϕ

x
−t ◦ϕ

x
t (p) = ϕ

x
−t ◦hre−t ◦ϕ

x
t (p),

we have

Af (p,et) = 1
et

∫ et

0
f ◦hr (p)dr = 1

et

∫ et

0
f ◦ϕ

x
−t ◦hre−t ◦ϕ

x
t (p)dr

=
∫ 1

0
f ◦ϕ

x
−t ◦hr

(
ϕ

x
t (p)

)
dr .

Davide Ravotti (University of Vienna) Horocycle flows and their time-changes 25 May 2023 8 / 28



Ergodic averages

We obtained
Af (p,et) =

∫ 1

0
f ◦ϕ

x
−t ◦hr

(
ϕ

x
t (p)

)
dr .

Define
Jf (p, t) :=

∫ 1

0
f ◦ϕ

x
−t ◦hr (p)dr ,

we proved the following fact.

Lemma
For any f ∈ C (M),

Af (p, t) = Jf
(
ϕ

x
log t(p), log t

)
.
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The function J
Assume now f ∈ C 2(M), so that

�f ∈ C (M), where � = R2−X 2−Y 2.

Fix p ∈M; we study

J(t) = Jf (p, t) =
∫ 1

0
f ◦ϕ

x
−t ◦hr (p)dr .

Proposition
Assume that f ∈ C 2(M) satisfies �f = µf for some µ ∈ R. Then,

J ′′(t) +J ′(t) + µJ(t) = e−t(Vf ◦ϕ
x
−t(p)−Vf ◦ϕ

x
−t ◦h1(p)

)
,

where v =
(
0 0
1 0

)
∈ g.
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Proof of the Proposition

Instead of the basis {r,x,y}, we express � in terms of the basis

u =
(
0 1
0 0

)
, x =

(
1/2 0
0 −1/2

)
, v =

(
0 0
1 0

)
,

so that
r = 1

2(v−u), and y = 1
2(u + v).

Thus, since vu = uv + [v,u] = uv−2x, we get

� = R2−X 2−Y 2 = 1
4(V −U)(V −U)−X 2− 1

4(V +U)(V +U)

=−X 2− 1
2(UV +VU) =−X 2 +X −UV .
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Proof of the Proposition

For f ∈ C 2(M), we have

d
dt f ◦ϕ

x
−t =−Xf ◦ϕ

x
−t , and d2

dt2 f ◦ϕ
x
−t = X 2f ◦ϕ

x
−t .

Recalling

J(t) =
∫ 1

0
f ◦ϕ

x
−t ◦hr (p)dr , and � =−X 2 +X −UV ,

we differentiate under the integral sign,∫ 1

0
(�f )◦ϕ

x
−t ◦hr (p)dr =−J ′′(t)−J ′(t)−

∫ 1

0
(UVf )◦ϕ

x
−t ◦hr (p)dr .
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Proof of the Proposition

If �f = µf , we deduce

J ′′(t) +J ′(t) + µJ(t) =−
∫ 1

0
(UVf )◦ϕ

x
−t ◦hr (p)dr .

Now we use the commutation ϕx
−t ◦hr (p) = het r ◦ϕx

−t(p) to get

−
∫ 1

0
(UVf )◦ϕ

x
−t ◦hr (p)dr =−

∫ 1

0
(UVf )◦het r ◦ϕ

x
−t(p)dr

=−e−t
∫ et

0
(UVf )◦hr ◦ϕ

x
−t(p)dr =−e−t[Vf ◦hr ◦ϕ

x
−t(p)

]et

0

= e−t(Vf ◦ϕ
x
−t(p)−Vf ◦ϕ

x
−t ◦h1(p)

)
.

Davide Ravotti (University of Vienna) Horocycle flows and their time-changes 25 May 2023 13 / 28



Asymptotics for J
We need to solve

J ′′(t) +J ′(t) + µJ(t) = e−tG(t),

where
G(t) = Gf (p, t) = Vf ◦ϕ

x
−t(p)−Vf ◦ϕ

x
−t ◦h1(p).

Note that
sup
t≥0

sup
p∈M
|Gf (p, t)| ≤ 2‖f ‖C 1 .

Let
ν ∈ R≥0∪ ıR>0 such that 1−ν2

4 = µ.

The roots of x2 + x + µ = 0 are 1±ν

2 ∈ R∪ 1
2 + ıR.
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Asymptotics for J

Assume µ ∈ (0,1/4) so that ν ∈ (0,1). Then, the solution is

J(t) =e−
1+ν

2 t

(
− 1

ν

∫ t

0
e−

1−ν

2 ξG(ξ )dξ − 1−ν

2ν
J(0)− 1

ν
J ′(0)

)

+ e−
1−ν

2 t

(
1
ν

∫ t

0
e−

1+ν

2 ξG(ξ )dξ + 1+ ν

2ν
J(0) + 1

ν
J ′(0)

)

Note that

e−
1±ν

2 t
∣∣∣∣∫ ∞

t
e−

1∓ν

2 ξG(ξ )dξ

∣∣∣∣≤ 4
1∓ν

‖f ‖C 1 e−t .
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Asymptotics for J

Define

D±µ f (p) =∓ 1
ν

∫
∞

0
e−

1∓ν

2 ξGf (p,ξ )dξ ∓ 1∓ν

2ν
Jf (p,0)∓ 1

ν
J ′f (p,0),∣∣D±µ f (p)

∣∣≤ 6
ν(1−ν)‖f ‖C 1 .

Then,

J(t) = Jf (p, t) = e−
1+ν

2 tD+
µ f (p) + e−

1−ν

2 tD−µ f (p) +O
(
e−t).
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Ergodic averages

Let pt denote ϕx
log t(p).

Theorem
Let f ∈ C 2(M) with �f = µf for some µ ∈ (0,1/4). Then, there exist
bounded functions D±µ f , with

‖D±µ f ‖∞ ≤
6

ν(1−ν)‖f ‖C 1 ,

such that

1
t

∫ t

0
f ◦hr (p)dr = t−

1+ν

2 D+
µ f (pt) + t−

1−ν

2 D−µ f (pt) +O
(
t−1
)
.

Proof. Follows from the formula for Jf (p, t) and the relation
Af (p, t) = Jf

(
pt , log t

)
.
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Ergodic averages
Theorem (Flaminio-Forni 2003, Bufetov-Forni 2014, R. 2023)
There exists an explicit constant CM ≥ 0 such that the following holds.
Let f ∈ C 4(M). For every µ ∈ Spec(�)∩R>0, there exist bounded
functions D±µ f , with

∑
µ∈Spec(�)∩R>0

‖D±µ f ‖∞ ≤ CM‖f ‖C 4 ,

such that for all p ∈M and t ≥ 1 we have

Af (p, t) =
∫

M
f dvol+ ∑

µ∈Spec(�)R>0\{ 14}
t−

1±ν

2 D±µ f (pt)

+ 1lSpec(�)(1/4) ·
(
t−

1
2 D+

1
4
f (pt) + t−

1
2 log tD−1

4
f (pt)

)
+O

(
1+ log t

t

)
.
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Ergodic averages

The proof uses the following ingredients:
a spectral decomposition of f ∈ L2(M) into

f = ∑
µ∈Spec(�)

fµ , where fµ ∈ L2(M) and �fµ = µ fµ ,

Sobolev Embedding Theorem to ensure that fµ ∈ C 2(M),
the fact that Spec(�) is discrete and “explicit”.

Corollary (Burger 1990)
There exist explicit constants CM ≥ 0 and ν0 ∈ [0,1) such that for every
f ∈ C 4(M) and every p ∈M we have∣∣∣∣Af (p, t)−

∫
M
f dvol

∣∣∣∣≤ CM‖f ‖C 4t−
1−ν0
2 .
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Hölder regularity

Proposition
The functions D±µ f are Hölder continuous with exponent (1∓ℜν)/2,
except D+

1
4
f which has exponent 1/2− ε for all ε > 0.

Proof (sketch). Fix µ 6= 1/4. Recall that

D±µ f (p) =∓ 1
ν

∫
∞

0
e−

1∓ν

2 ξGf (p,ξ )dξ ∓ 1∓ν

2ν
Jf (p,0)∓ 1

ν
J ′f (p,0).

The terms

Jf (p,0) =
∫ 1

0
f ◦hr (p)dr , and J ′f (p,0) =−

∫ 1

0
Xf ◦hr (p)dr

are C 1-functions in p, hence we focus on the first term.
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Hölder regularity

Let p,q ∈M, and assume that

q = ϕ
w
s (p) = p exp(sw), for some w ∈ g,

with ‖w‖∞ ≤ 1. It suffices to bound∫
∞

0
e−aξ |Gf (p,ξ )−Gf (q,ξ )|dξ , where a = 1∓ℜν

2 ,

and Gf (p,ξ ) = Vf ◦ϕ
x
−ξ

(p)−Vf ◦ϕ
x
−ξ
◦h1(p).

By the Mean-Value Theorem,

|Gf (p,ξ )−Gf (q,ξ )| ≤ ‖f ‖C 2 (|Dϕ
x
−ξ

(w)|+ |Dϕ
x
−ξ
◦Dh1(w)|)s

≤ 6‖f ‖C 2eξ s.
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Hölder regularity

We obtained that

|Gf (p,ξ )−Gf (q,ξ )| ≤ 6‖f ‖C 2 min{1,eξ s}.

From this, it is a nice calculus exercise to show that∫
∞

0
e−aξ |Gf (p,ξ )−Gf (q,ξ )|dξ ≤ 6‖f ‖C 2 max

{
1

1−a ,
1
a

}
sa.

The case µ = 1/4 is a slight modification of this proof.
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A temporal distributional limit theorem
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The case µ = 0

Let f ∈ C 2(M) be such that �f = 0. In this case, J(t) = Jf (p, t) satisfies

J ′′(t) +J ′(t) = e−tG(t).

We can easily find the solution

J(t) = const− e−t
∫ t

0
G(ξ )dξ +O(e−t).

Recall that
Jf (p, t) = Af (ϕ

x
−t(p),et).

If we assume
∫

M f dvol = 0, by unique ergodicity,

‖Jf (·, t)‖∞ = ‖Af (·,et)‖∞→ 0, so that const = 0.
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The case µ = 0

Unpacking the definitions of J and G , we can prove the following formula.

Theorem
Let f ∈ C 2(M) be such that

∫
M f dvol = 0 and �f = 0. Then, for every

p ∈M and t ≥ 1, we have∫ t

0
f ◦hr (p)dr =

∫ log t

0

[
Vf ◦ϕ

x
ξ
◦ht(p)−Vf ◦ϕ

x
ξ

(p)
]

dξ +O(1).

In other words, we related the integrals of f along a horocycle orbit of
length t to the difference of integrals along two geodesic orbits of length
log t.
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The case µ = 0
Let us note that∫

∞

log t

[
Vf ◦ϕ

x
ξ
◦ht(p)−Vf ◦ϕ

x
ξ

(p)
]

dξ = O(1).

Thus, for any t ≤ T , it is also true that∫ t

0
f ◦hr (p)dr =

∫ log T

0

[
Vf ◦ϕ

x
ξ
◦ht(p)−Vf ◦ϕ

x
ξ

(p)
]

dξ +O(1).

If we call
CT (p) :=

∫ log T

0
Vf ◦ϕ

x
ξ

(p)dξ ,

we can rewrite∫ t
0 f ◦hr (p)dr −CT (p)√

logT
= 1√

logT

∫ log T

0
Vf ◦ϕ

x
ξ
◦ht(p)dξ +o(1).
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A temporal CLT

We have∫ t
0 f ◦hr (p)dr −CT (p)√

logT
= 1√

logT

∫ log T

0
Vf ◦ϕ

x
ξ
◦ht(p)dξ +o(1).

Imagine now taking t ∈ [1,T ] randomly uniformly.
In the right-hand side we see an integral along a geodesic orbit of
length logT where the point is chosen randomly uniformly on a
horocycle orbit of length T .
By unique ergodicity, horocycle orbits become equidistributed:
uniform measures on long orbits converge weakly to the volume
measure.
Can we apply the CLT for the geodesic flow?
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A temporal CLT

The previous “non-proof” can be turned into a real proof of the following
result.

Theorem (Dolgopyat-Sarig 2017, Corso 2023)
Let f ∈ C 2(M) be such that

∫
M f dvol = 0 and �f = 0. Assume that f is

not a measurable coboundary for the horocycle flow. Then, there exists
σ > 0 such that for every p ∈M,∫ t

0 f ◦hr (p)dr −CT (p)√
logT

→N(0,σ), t ∼ U[1,T ]

in distribution, as t→ ∞.
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