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Plan for today

Today we will study the mixing properties of the horocycle flows. We will
look at:

the mixing via shearing method (using geodesic curves),
the equidistribution of arbitrary homogeneous curves,
Ratner’s result on the rate of decay of correlations.
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Mixing via shearing
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The setting

G = SL2(R) and Γ≤ G is discrete,
M = Γ\G is compact,
vol is the Haar measure on M, normalized so that vol(M) = 1.

u =
(
0 1
0 0

)
∈ g generates the horocycle flow

ht = ϕ
u
t : Γg 7→ Γg

(
1 t
0 1

)
.

x =
(
1/2 0
0 −1/2

)
∈ g generates the geodesic flow

ϕ
x
t : Γg 7→ Γg

(
e t

2 0
0 e− t

2

)
.
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Mixing via shearing

Saying that (ht) is mixing means that for any measurable set A with
µ(A) > 0 and any f ∈ L∞(M) we have

1
µ(A)

∫
A

f ◦ht dvol→
∫

M
f dvol, as t→ ∞.

Instead, we now look at (smooth) arcs γ : [0,σ ]→M.

The smooth arc γ : [0,σ ]→M equidistributes under (ht) if for every
f ∈ L∞(M) we have

1
σ

∫
σ

0
f ◦ht ◦ γ(s)ds →

∫
M

f dvol, as t→ ∞.
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Mixing via shearing

Let w ∈ g\{0}, then we let

γ
w
p,σ (s) = ϕ

w
s (p) = p exp(sw), for s ∈ [0,σ ].

Lemma
Let f ∈ L∞(M) with

∫
M f dvol = 0, and let g ∈ C 1(M). Then, for any

S ∈ (0,1], we have∣∣∣∣∫M
f ◦ht ·g dvol

∣∣∣∣≤ 2‖g‖C 1 ·
1
S sup

σ∈(0,S]

∥∥∥∥∫ σ

0
f ◦ht ◦ϕ

w
s ds

∥∥∥∥
2
.

Equidistribution of arcs γw
p,σ under (ht) for “most” points p implies mixing.
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Proof of the Lemma

By measure invariance,∫
M

f ◦ht ·g dvol =
∫

M
(f ◦ht ·g)◦ϕ

w
s dvol,

for all s ∈ R. Therefore, given S > 0,∫
M

f ◦ht ·g dvol = 1
S

∫ S

0

∫
M

(f ◦ht ·g)◦ϕ
w
σ dvoldσ .

Integrating by parts,∫ S

0
(f ◦ht ◦ϕ

w
σ ) · (g ◦ϕ

w
σ )dσ =

(∫ S

0
f ◦ht ◦ϕ

w
σ dσ

)
· (g ◦ϕ

w
S )

−
∫ S

0

(∫
σ

0
f ◦ht ◦ϕ

w
s ds

)
·Wg ◦ϕ

w
σ dσ .
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Proof of the Lemma
We obtained∫

M
f ◦ht ·g dvol = 1

S

∫
M

(∫ S

0
f ◦ht ◦ϕ

w
σ dσ

)
· (g ◦ϕ

w
S )dvol

− 1
S

∫
M

∫ S

0

(∫
σ

0
f ◦ht ◦ϕ

w
s ds

)
·Wg ◦ϕ

w
σ dσ dvol .

By Cauchy-Schwarz,∣∣∣∣∫M
f ◦ht ·g dvol

∣∣∣∣≤‖g‖C 1 ·
1
S

∥∥∥∥∫ S

0
f ◦ht ◦ϕ

w
σ dσ

∥∥∥∥
2

+‖g‖C 1 · sup
σ∈(0,S]

∥∥∥∥∫ σ

0
f ◦ht ◦ϕ

w
s ds

∥∥∥∥
2

≤2‖g‖C 1 ·
1
S sup

σ∈(0,S]

∥∥∥∥∫ σ

0
f ◦ht ◦ϕ

w
s ds

∥∥∥∥
2
.
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Shearing of geodesic segments
We look at the case w = x. Recall that

ϕ
x
s ◦hes t(p) = ht ◦ϕ

x
s (p) for any p ∈M.
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Shearing of geodesic segments
Let γx

p,σ (s) = ϕx
s (p), for s ∈ [0,σ ], be a geodesic segment, with σ ≤ 1.

Then,

ht ◦ γ
x
p,σ (s) = ht ◦ϕ

x
s (p) = ϕ

x
s ◦hes t(p)≈ hes t(p), for s ∈ [0,σ ].

More precisely, if f ∈ C 1(M), then we have∣∣∣∣∫ σ

0
f ◦ht ◦ϕ

x
s (p)ds−

∫
σ

0
f ◦hes t(p)ds

∣∣∣∣
≤
∫

σ

0
|f ◦ϕ

x
s − f | ◦hes t(p)ds ≤ ‖Xf ‖∞ ·σ2.

Moreover,∣∣∣∣∫ σ

0
f ◦hes t(p)ds−

∫
σ

0
f ◦h(s+1)t(p)ds

∣∣∣∣≤ ‖Uf ‖∞ ·σ3t.
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Shearing of geodesic segments

A change of variables gives us∫
σ

0
f ◦h(s+1)t(p)ds = 1

t

∫
σt

0
f ◦hs(ht(p))ds.

thus,∣∣∣∣∫ σ

0
f ◦ht ◦ϕ

x
s (p)ds− 1

t

∫
σt

0
f ◦hs(ht(p))ds

∣∣∣∣≤ ‖f ‖C 1 · (σ
2 + σ

3t).

The remaining term to bound is an ergodic integral at time σt.
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Shearing of geodesic segments

In Lecture 2 we saw that, if f ∈ C 4(M) has zero average, then∥∥∥∥∫ σt

0
f ◦hs ds

∥∥∥∥
∞

≤ CM‖f ‖C 4(σt)
1+ν0
2 ,

for some explicit ν0 ∈ [0,1), whenever σt ≥ 1.
Thus, we proved that for every t ≥ 1 and 0< σ ≤ 1 we have∣∣∣∣∫ σ

0
f ◦ht ◦ϕ

x
s (p)ds

∣∣∣∣≤ CM‖f ‖C 4 ·
(

t−1min
{

(σt)
1+ν0
2 ,σt

}
+ σ

2 + σ
3t
)
.

This implies that

sup
σ∈(0,t−1/2]

∣∣∣∣∫ σ

0
f ◦ht ◦ϕ

x
s (p)ds

∣∣∣∣≤ CM‖f ‖C 4t−
3−ν0
4 .
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Mixing via shearing

From the mixing via shearing lemma, choosing S = t−1/2, for any
f ∈ C 4(M) with

∫
M f dvol = 0 and g ∈ C 1(M), we have∣∣∣∣∫M

f ◦ht ·g dvol
∣∣∣∣≤ 2‖g‖C 1 · t1/2 sup

σ∈(0,t−1/2]

∥∥∥∥∫ σ

0
f ◦ht ◦ϕ

x
s ds
∥∥∥∥
2

≤ 2CM‖g‖C 1‖f ‖C 4t−
1−ν0
4 .

Theorem
The horocycle flow on M is mixing with polynomial rates: there exist
CM > 0 and η ∈ (0,1] such that for every f ,g ∈ C 4(M) we have∣∣∣∣∫M

f ◦ht ·g dvol−
(∫

M
f dvol

)(∫
M

g dvol
)∣∣∣∣≤ CM‖g‖C 1‖f ‖C 4t−η .
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What is the optimal exponent?

By the mixing via shearing lemma, the speed of mixing was related to
the equidistribution of curves γw

p,σ (s) = ϕw
s (p).

We chose w = x (i.e., geodesic arcs) and we proved that ht ◦ γx
p,σ

approximate a horocycle orbit of length tσ .
By unique ergodicity, ht ◦ γx

p,σ becomes equidistributed as t→ ∞.
Note that this approach will give a speed of mixing which at best
matches the speed of equidistribution of horocycle orbits.
Do other curves equidistribute faster?
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Equidistribution of homogeneous arcs
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Equidistribution of homogeneous curves

Recall that the equidistribution of a horocycle average at time t is
O(t−

1−ν0
2 ), for some ν0 ∈ [0,1).

Theorem (Bufetov-Forni 2014)
Let w = au + bx, with b 6= 0. For every S > 0 there exists a constant
C = C(w,S,M) such that for all f ∈ C 6(M) with

∫
M f dvol = 0, for all

p ∈M and for all t ≥ 1 we have

sup
σ∈(0,S]

∣∣∣∣∫ σ

0
f ◦ht ◦ϕ

w
s (p)ds

∣∣∣∣≤ C‖f ‖C 6t−
1−ν0
2 (1+ log t).

Small note: in the case ν0 > 0, the factor (1+ log t) is not present.
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Equidistribution of homogeneous curves

Theorem (R. 2020)
Let w = au + bx + cv, with c 6= 0. For every S > 0 there exists a constant
C = C(w,S,M) such that for all f ∈ C 6(M) with

∫
M f dvol = 0, for all

p ∈M and for all t ≥ 1 we have

sup
σ∈(0,S]

∣∣∣∣∫ σ

0
f ◦ht ◦ϕ

w
s (p)ds

∣∣∣∣≤ C‖f ‖C 6t−(1−ν0)(1+ log t).
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Equidistribution of homogeneous curves

Homogeneous arcs transverse to the foliation tangent to 〈X ,U〉
—namely, the weak-stable leaves of the geodesic flow— equidistribute
faster than geodesic arcs.
By the mixing via shearing lemma, the rate of mixing of the horocycle
flow is at least O(t−(1−ν0)); the exponent is double the exponent
coming from equidistribution of orbits.
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Key observation

Let us look at the case

γ
v
p,σ (s) = ϕ

v
s (p) = p

(
1 0
s 1

)
, for s ∈ [0,σ ].

The key observation is that(
1 0
s 1

)(
1 t
0 1

)(
1 0
−1/t 1

)
=
(
1 t
0 1

)(
1 0
−1/t 1

)(
1 −st2
0 1

)
.

which means

ϕ
v
−1/t ◦ht ◦ γ

v
p,σ (s) = h−st2(pt), where pt = ϕ

v
−1/t ◦ht(p).
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Key observation

From

ϕ
v
−1/t ◦ht ◦ γ

v
p,σ (s) = h−st2(pt), where pt = ϕ

v
−1/t ◦ht(p),

roughly speaking, we deduce

1
σ

∫
σ

0
ht ◦ γ

v
p,σ (s)ds ≈ 1

σ

∫
σ

0
h−st2(pt)ds = 1

σt2
∫

σt2

0
h−s(pt)ds.

In other words, the segment ht ◦ γv
p,σ (s) is “very close” to a horocycle orbit

of length σt2, parametrized with constant speed.
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Ratner’s Theorem on mixing rates
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Our observables

Recall from Lecture 1 that the Casimir operator � was defined as

� = R2−X 2−Y 2 =−X 2 + X −U2−2UR,

where r =
(

0 −1/2
1/2 0

)
is the generator of SO(2).

We consider a functions f ∈ C 2(M) such that

�f = µf , Rf = 0,

for some µ > 0.
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Our observables

Rf = 0 means that f is SO(2)-invariant and hence is defined on
M/SO(2) or, equivalently, defined on G/SO(2) and invariant by Γ.
In Lecture 1, we saw that G/SO(2) can be identified with the
hyperbolic plane H , so f is a function on H invariant by the action
of Γ. That is, f is a function on the hyperbolic surface S = Γ\H .
For positive µ > 0, saying that f satisfies �f = µf and Rf = 0 is
equivalent to asking that ∆S f = µf , i.e., f is an eigenfunction of the
Laplacian on S.
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The function K

We want to compute the self-correlations

K (t) := 〈f ◦ht , f 〉=
∫

M
f ◦ht · f dvol .

Note that, for any j ≥ 0,

K (j)(t) = dj

dt j 〈f ◦ht , f 〉= 〈 dj

dt j f ◦ht , f 〉= 〈U j f ◦ht , f 〉.

We also define
Q(t) := 〈Xf ◦ht , f 〉.
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The function K

We have

0 =−〈f ◦ht ,Rf 〉= 〈R(f ◦ht), f 〉= 〈[Dht(R)f ]◦ht , f 〉.

From Lecture 1, we can compute

Dht(R)' Ad(exp(tu))r = r− tx− t2
2 u.

Therefore

0 = 〈Rf ◦ht , f 〉− t〈Xf ◦ht , f 〉−
t2
2 〈Uf ◦ht , f 〉

=−tQ(t)− t2
2 K ′(t).
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The function K

For all t ≥ 1, we obtained

Q(t) =− t
2K ′(t).

This implies that
Q′(t) =−1

2K ′(t)− t
2K ′′(t).

Remark: since K ′(t) = 〈Uf ◦ht , f 〉 and Q′(t) = 〈UXf ◦ht , f 〉, by the
Cauchy-Schwarz Inequality,

|K ′(t)| ≤ ‖f ‖2C 1 , and

|K ′′(t)| ≤ 1
t (|K ′(t)|+2|Q′(t)|)≤ 3

t ‖f ‖
2
C 2 .
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The function Q(t)

We do the same for Q(t) instead of K (t) and we get

0 =−〈Xf ◦ht ,Rf 〉= 〈R(Xf ◦ht), f 〉= 〈[Dht(R)Xf ]◦ht , f 〉

= 〈RXf ◦ht , f 〉− t〈X 2f ◦ht , f 〉−
t2
2 〈UXf ◦ht , f 〉.

Since, from Lecture 1, r ·x−x · r = [r,x] = 1
2y = 1

2(r + u), we can write

0 =〈XRf ◦ht , f 〉+
1
2〈Rf ◦ht , f 〉+

1
2〈Uf ◦ht , f 〉

− t〈X 2f ◦ht , f 〉−
t2
2 〈UXf ◦ht , f 〉

=1
2K ′(t)− t〈X 2f ◦ht , f 〉−

t2
2 Q′(t).
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The equation to solve

We proved that

Q(t) =− t
2K ′(t), Q′(t) =−1

2K ′(t)− t
2K ′′(t),

〈X 2f ◦ht , f 〉= 1
2t K ′(t)− t

2Q′(t).

Since �f = µf we also have

µK (t) = 〈µf ◦ht , f 〉= 〈�f ◦ht , f 〉
= 〈(−X 2 + X −U2−2UR)f ◦ht , f 〉
=−〈X 2f ◦ht , f 〉+ Q(t)−K ′′(t).
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The equation to solve

Plugging everything together, we find

t2K ′′(t) +3tK ′(t) +4µK (t) =−4K ′′(t)− 2
t K ′(t).

Recalling the bounds we had for |K ′(t)| and for |K ′′(t)|, we proved the
following result.

Theorem
Let f ∈ C 2(M) be such that Rf = 0 and �f = µf for some µ > 0. Then
the self-correlations K (t) = 〈f ◦ht , f 〉 satisfy

t2K ′′(t) +3tK ′(t) +4µK (t) = P(t), for all t ≥ 1,

where P(t) is such that |P(t)| ≤ 14‖f ‖C 2 t−1.
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The solution

Assume µ 6= 1/4. Then, the previous equation can be solved exactly: if we
let ν ∈ R>0∪ iR>0 be such that ν2 = 1−4µ, we get

K (t) = t−1+ν

2ν

∫ t

1
r−νP(r)dr − t−1−ν

2ν

∫ t

1
rνP(r)dr + c1t−1+ν + c2t−1−ν ,

where the constants c1,c2 are determined by the initial conditions K (1)
and K ′(1).
Recalling P(t) = O(t−1), we can rewrite

K (t) = t−1+ν

2ν

(∫
∞

1
r−νP(r)dr + c1

)
+ O(t−1).
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The solution

Theorem
Let f ∈ C 2(M) be such that Rf = 0 and �f = µf for some µ > 0,
µ 6= 1/4. Then, there exists a constant A = A(f ) such that

|〈f ◦ht , f 〉−At−1+ν |= O(t−1).

In particular,
|〈f ◦ht , f 〉|= O(t−1+ℜν ).

Exercise: generalise the theorem above to 〈f ◦ht ,g〉, where f ,g ∈ C 2(M)
are such that

�f = µf , Rf = i n f ,
�g = µg , Rg = i mg ,

for some µ ∈ R and n,m ∈ Z.
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Ratner’s Theorem

Theorem (Ratner 1987)
There exists ν0 ∈ [0,1) such that the following holds. Let f ,g be such that
R3f and R3g exist and are continuous. Then, there exists a constant
A = A(f ,g) such that∣∣∣∣∫M

f ◦ht ·g dvol−
(∫

M
f dvol

)(∫
M

g dvol
)∣∣∣∣≤ At−1+ν ,

for all t ≥ 1.
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Ratner’s Theorem

The proof uses a spectral decomposition of f ∈ L2(M) into

f = ∑
µ∈Spec(�)

∑
n∈Iµ

fµ,n,

where Iµ ⊆ Z and fµ,n ∈ C ∞(M) satisfies �fµ,n = µ fµ,n and Rfµ,n = infµ,n.
All these functions fµ,n are mutually orthogonal.
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