Ergodic and mixing properties of horocycle flows and their time-changes Simons Semester – Lecture 3

Davide Ravotti

University of Vienna

29 May 2023

Plan for today

Today we will study the mixing properties of the horocycle flows. We will look at:

- the mixing via shearing method (using geodesic curves),
- the equidistribution of arbitrary homogeneous curves,
- Ratner's result on the rate of decay of correlations.

Mixing via shearing

(日)

The setting

- $G = \mathsf{SL}_2(\mathbb{R})$ and $\Gamma \leq G$ is discrete,
- $M = \Gamma \setminus G$ is compact,
- vol is the Haar measure on M, normalized so that vol(M) = 1.

• $\mathbf{u} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathfrak{g}$ generates the horocycle flow

$$h_t = \varphi_t^{\mathbf{u}} \colon \mathsf{\Gamma}g \mapsto \mathsf{\Gamma}g \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

• $\mathbf{x} = \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} \in \mathfrak{g}$ generates the geodesic flow

$$\varphi_t^{\mathbf{x}} \colon \mathsf{\Gamma}g \mapsto \mathsf{\Gamma}g \begin{pmatrix} e^{rac{t}{2}} & 0 \\ 0 & e^{-rac{t}{2}} \end{pmatrix}.$$

くぼう くほう くほう しほ

Mixing via shearing

Saying that (h_t) is mixing means that for any measurable set A with $\mu(A) > 0$ and any $f \in L^{\infty}(M)$ we have

$$rac{1}{\mu(A)}\int_A f\circ h_t\,\mathrm{d}\,\mathrm{vol}
ightarrow\int_M f\,\mathrm{d}\,\mathrm{vol},\qquad$$
 as $t
ightarrow\infty.$

Instead, we now look at (smooth) arcs $\gamma: [0, \sigma] \to M$.

The smooth arc $\gamma: [0, \sigma] \to M$ equidistributes under (h_t) if for every $f \in L^{\infty}(M)$ we have

$$\frac{1}{\sigma}\int_0^\sigma f\circ h_t\circ\gamma(s)\,\mathrm{d} s\to\int_M f\,\mathrm{d}\,\mathrm{vol},\qquad\text{as }t\to\infty.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Mixing via shearing

Let $\boldsymbol{w} \in \mathfrak{g} \setminus \{0\},$ then we let

$$\gamma_{\rho,\sigma}^{\mathbf{w}}(s) = \varphi_s^{\mathbf{w}}(\rho) = p \exp(s \mathbf{w}), \quad \text{for } s \in [0,\sigma].$$

Lemma

Let $f \in L^{\infty}(M)$ with $\int_{M} f \, dvol = 0$, and let $g \in \mathscr{C}^{1}(M)$. Then, for any $S \in (0, 1]$, we have

$$\left|\int_{M} f \circ h_{t} \cdot g \operatorname{dvol}\right| \leq 2 \|g\|_{\mathscr{C}^{1}} \cdot \frac{1}{S} \sup_{\sigma \in (0,S]} \left\|\int_{0}^{\sigma} f \circ h_{t} \circ \varphi_{s}^{\mathsf{w}} \operatorname{ds}\right\|_{2}$$

Equidistribution of arcs $\gamma_{p,\sigma}^{w}$ under (h_t) for "most" points p implies mixing.

- 4 回 ト - 4 三 ト

.

Proof of the Lemma

By measure invariance,

$$\int_{\mathcal{M}} f \circ h_t \cdot g \, \mathrm{d} \operatorname{vol} = \int_{\mathcal{M}} (f \circ h_t \cdot g) \circ \varphi_s^{\mathsf{w}} \, \mathrm{d} \operatorname{vol},$$

for all $s \in \mathbb{R}$. Therefore, given S > 0,

$$\int_{M} f \circ h_t \cdot g \, \mathrm{dvol} = \frac{1}{S} \int_0^S \int_{M} (f \circ h_t \cdot g) \circ \varphi_{\sigma}^{\mathsf{w}} \, \mathrm{dvol} \, \mathrm{d}\sigma.$$

Integrating by parts,

$$\int_0^S (f \circ h_t \circ \varphi_{\sigma}^{\mathsf{w}}) \cdot (g \circ \varphi_{\sigma}^{\mathsf{w}}) \, \mathrm{d}\sigma = \left(\int_0^S f \circ h_t \circ \varphi_{\sigma}^{\mathsf{w}} \, \mathrm{d}\sigma \right) \cdot (g \circ \varphi_S^{\mathsf{w}}) \\ - \int_0^S \left(\int_0^\sigma f \circ h_t \circ \varphi_s^{\mathsf{w}} \, \mathrm{d}s \right) \cdot Wg \circ \varphi_{\sigma}^{\mathsf{w}} \, \mathrm{d}\sigma.$$

< ⊒ >

Proof of the Lemma

We obtained

$$\int_{M} f \circ h_{t} \cdot g \, \mathrm{d} \operatorname{vol} = \frac{1}{S} \int_{M} \left(\int_{0}^{S} f \circ h_{t} \circ \varphi_{\sigma}^{\mathsf{w}} \, \mathrm{d} \sigma \right) \cdot (g \circ \varphi_{S}^{\mathsf{w}}) \, \mathrm{d} \operatorname{vol}$$
$$- \frac{1}{S} \int_{M} \int_{0}^{S} \left(\int_{0}^{\sigma} f \circ h_{t} \circ \varphi_{s}^{\mathsf{w}} \, \mathrm{d} s \right) \cdot Wg \circ \varphi_{\sigma}^{\mathsf{w}} \, \mathrm{d} \sigma \, \mathrm{d} \operatorname{vol}.$$

By Cauchy-Schwarz,

$$\begin{split} \left| \int_{M} f \circ h_{t} \cdot g \, \mathrm{d} \, \mathrm{vol} \right| &\leq \|g\|_{\mathscr{C}^{1}} \cdot \frac{1}{S} \left\| \int_{0}^{S} f \circ h_{t} \circ \varphi_{\sigma}^{\mathsf{w}} \, \mathrm{d} \sigma \right\|_{2} \\ &+ \|g\|_{\mathscr{C}^{1}} \cdot \sup_{\sigma \in \{0, S\}} \left\| \int_{0}^{\sigma} f \circ h_{t} \circ \varphi_{s}^{\mathsf{w}} \, \mathrm{d} s \right\|_{2} \\ &\leq 2 \|g\|_{\mathscr{C}^{1}} \cdot \frac{1}{S} \sup_{\sigma \in \{0, S\}} \left\| \int_{0}^{\sigma} f \circ h_{t} \circ \varphi_{s}^{\mathsf{w}} \, \mathrm{d} s \right\|_{2} \end{split}$$

.

We look at the case $\mathbf{w} = \mathbf{x}$. Recall that

Let $\gamma_{\rho,\sigma}^{\mathbf{x}}(s) = \varphi_s^{\mathbf{x}}(\rho)$, for $s \in [0,\sigma]$, be a geodesic segment, with $\sigma \leq 1$. Then,

$$h_t \circ \gamma^{\mathsf{x}}_{p,\sigma}(s) = h_t \circ \varphi^{\mathsf{x}}_s(p) = \varphi^{\mathsf{x}}_s \circ h_{e^s t}(p) pprox h_{e^s t}(p), \qquad ext{for } s \in [0,\sigma].$$

More precisely, if $f \in \mathscr{C}^1(M)$, then we have

$$\left| \int_0^{\sigma} f \circ h_t \circ \varphi_s^{\mathsf{x}}(p) \, \mathrm{d}s - \int_0^{\sigma} f \circ h_{e^s t}(p) \, \mathrm{d}s \right|$$

$$\leq \int_0^{\sigma} |f \circ \varphi_s^{\mathsf{x}} - f| \circ h_{e^s t}(p) \, \mathrm{d}s \leq \|Xf\|_{\infty} \cdot \sigma^2.$$

Moreover,

$$\left|\int_0^{\sigma} f \circ h_{e^s t}(p) \,\mathrm{d} s - \int_0^{\sigma} f \circ h_{(s+1)t}(p) \,\mathrm{d} s\right| \leq \|Uf\|_{\infty} \cdot \sigma^3 t.$$

▲ □ ▶ ▲ □ ▶

A change of variables gives us

$$\int_0^{\sigma} f \circ h_{(s+1)t}(p) \mathrm{d}s = \frac{1}{t} \int_0^{\sigma t} f \circ h_s(h_t(p)) \mathrm{d}s.$$

thus,

$$\left|\int_0^{\sigma} f \circ h_t \circ \varphi_s^{\mathsf{x}}(p) \, \mathrm{d}s - \frac{1}{t} \int_0^{\sigma t} f \circ h_s(h_t(p)) \, \mathrm{d}s \right| \leq \|f\|_{\mathscr{C}^1} \cdot (\sigma^2 + \sigma^3 t).$$

The remaining term to bound is an ergodic integral at time σt .

In Lecture 2 we saw that, if $f \in \mathscr{C}^4(M)$ has zero average, then

$$\left\|\int_0^{\sigma t} f \circ h_s \,\mathrm{d}s\right\|_{\infty} \leq C_M \|f\|_{\mathscr{C}^4} (\sigma t)^{\frac{1+\nu_0}{2}},$$

for some explicit $v_0 \in [0,1)$, whenever $\sigma t \ge 1$. Thus, we proved that for every $t \ge 1$ and $0 < \sigma \le 1$ we have

$$\left|\int_0^{\sigma} f \circ h_t \circ \varphi_s^{\mathsf{x}}(p) \, \mathrm{d}s\right| \leq C_M \|f\|_{\mathscr{C}^4} \cdot \left(t^{-1} \min\left\{(\sigma t)^{\frac{1+\nu_0}{2}}, \sigma t\right\} + \sigma^2 + \sigma^3 t\right).$$

This implies that

$$\sup_{\sigma\in(0,t^{-1/2}]}\left|\int_0^{\sigma}f\circ h_t\circ\varphi_s^{\mathsf{x}}(p)\,\mathrm{d}s\right|\leq C_M\|f\|_{\mathscr{C}^4}t^{-\frac{3-\nu_0}{4}}.$$

Mixing via shearing

From the mixing via shearing lemma, choosing $S = t^{-1/2}$, for any $f \in \mathscr{C}^4(M)$ with $\int_M f \, dvol = 0$ and $g \in \mathscr{C}^1(M)$, we have

$$\begin{split} \left| \int_{M} f \circ h_{t} \cdot g \, \mathrm{dvol} \right| &\leq 2 \|g\|_{\mathscr{C}^{1}} \cdot t^{1/2} \sup_{\sigma \in (0, t^{-1/2}]} \left\| \int_{0}^{\sigma} f \circ h_{t} \circ \varphi_{s}^{\mathsf{x}} \, \mathrm{d}s \right\|_{2} \\ &\leq 2 C_{M} \|g\|_{\mathscr{C}^{1}} \|f\|_{\mathscr{C}^{4}} t^{-\frac{1-\nu_{0}}{4}}. \end{split}$$

Theorem

The horocycle flow on M is mixing with polynomial rates: there exist $C_M > 0$ and $\eta \in (0,1]$ such that for every $f, g \in C^4(M)$ we have

$$\left|\int_{M} f \circ h_t \cdot g \operatorname{dvol} - \left(\int_{M} f \operatorname{dvol}\right) \left(\int_{M} g \operatorname{dvol}\right)\right| \leq C_M \|g\|_{\mathscr{C}^1} \|f\|_{\mathscr{C}^4} t^{-\eta}.$$

What is the optimal exponent?

- By the mixing via shearing lemma, the speed of mixing was related to the equidistribution of curves γ^w_{p,σ}(s) = φ^w_s(p).
- We chose $\mathbf{w} = \mathbf{x}$ (i.e., geodesic arcs) and we proved that $h_t \circ \gamma_{p,\sigma}^{\mathbf{x}}$ approximate a horocycle orbit of length $t\sigma$.
- By unique ergodicity, $h_t \circ \gamma_{p,\sigma}^{\mathbf{x}}$ becomes equidistributed as $t \to \infty$.
- Note that this approach will give a speed of mixing which at best matches the speed of equidistribution of horocycle orbits.
- Do other curves equidistribute faster?

くぼう くほう くほう しほ

Equidistribution of homogeneous arcs

Equidistribution of homogeneous curves

Recall that the equidistribution of a horocycle average at time t is $O(t^{-\frac{1-\nu_0}{2}})$, for some $\nu_0 \in [0, 1)$.

Theorem (Bufetov-Forni 2014)

Let $\mathbf{w} = a\mathbf{u} + b\mathbf{x}$, with $b \neq 0$. For every S > 0 there exists a constant $C = C(\mathbf{w}, S, M)$ such that for all $f \in \mathscr{C}^6(M)$ with $\int_M f \, dvol = 0$, for all $p \in M$ and for all $t \geq 1$ we have

$$\sup_{\sigma\in(0,S]}\left|\int_0^{\sigma}f\circ h_t\circ\varphi^{\mathbf{w}}_s(p)\,\mathrm{d}s\right|\leq C\|f\|_{\mathscr{C}^6}t^{-\frac{1-\nu_0}{2}}(1+\log t).$$

Small note: in the case $v_0 > 0$, the factor $(1 + \log t)$ is not present.

くぼう くほう くほう しほ

Equidistribution of homogeneous curves

Theorem (R. 2020)

Let $\mathbf{w} = a\mathbf{u} + b\mathbf{x} + c\mathbf{v}$, with $c \neq 0$. For every S > 0 there exists a constant $C = C(\mathbf{w}, S, M)$ such that for all $f \in \mathscr{C}^6(M)$ with $\int_M f \, dvol = 0$, for all $p \in M$ and for all $t \geq 1$ we have

$$\sup_{\sigma\in(0,S]} \left|\int_0^{\sigma} f \circ h_t \circ \varphi^{\mathbf{w}}_s(p) \mathrm{d}s\right| \leq C \|f\|_{\mathscr{C}^6} t^{-(1-\nu_0)} (1+\log t).$$

Equidistribution of homogeneous curves

- Homogeneous arcs transverse to the foliation tangent to $\langle X, U \rangle$ —namely, the weak-stable leaves of the geodesic flow— equidistribute faster than geodesic arcs.
- By the mixing via shearing lemma, the rate of mixing of the horocycle flow is at least $O(t^{-(1-v_0)})$; the exponent is double the exponent coming from equidistribution of orbits.

Key observation

Let us look at the case

$$\gamma_{
ho,\sigma}^{f v}(s)=arphi_{s}^{f v}(
ho)=
ho egin{pmatrix} 1&0\s&1 \end{pmatrix}, \qquad ext{for }s\in[0,\sigma].$$

The key observation is that

$$\begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/t & 1 \end{pmatrix} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/t & 1 \end{pmatrix} \begin{pmatrix} 1 & -st^2 \\ 0 & 1 \end{pmatrix}.$$

which means

$$\varphi_{-1/t}^{\mathbf{v}} \circ h_t \circ \gamma_{p,\sigma}^{\mathbf{v}}(s) = h_{-st^2}(p_t), \quad \text{where } p_t = \varphi_{-1/t}^{\mathbf{v}} \circ h_t(p).$$

Key observation

From

$$\varphi_{-1/t}^{\mathbf{v}} \circ h_t \circ \gamma_{\rho,\sigma}^{\mathbf{v}}(s) = h_{-st^2}(p_t), \qquad ext{where } p_t = \varphi_{-1/t}^{\mathbf{v}} \circ h_t(p),$$

roughly speaking, we deduce

$$\frac{1}{\sigma}\int_0^{\sigma}h_t\circ\gamma_{\rho,\sigma}^{\nu}(s)\mathrm{d}s\approx\frac{1}{\sigma}\int_0^{\sigma}h_{-st^2}(p_t)\mathrm{d}s=\frac{1}{\sigma t^2}\int_0^{\sigma t^2}h_{-s}(p_t)\mathrm{d}s.$$

In other words, the segment $h_t \circ \gamma_{p,\sigma}^{\mathbf{v}}(s)$ is "very close" to a horocycle orbit of length σt^2 , parametrized with constant speed.

Ratner's Theorem on mixing rates

Image: A match a ma

Our observables

Recall from Lecture 1 that the Casimir operator \Box was defined as

$$\Box = R^2 - X^2 - Y^2 = -X^2 + X - U^2 - 2UR,$$

where $\mathbf{r} = \begin{pmatrix} 0 & -1/2 \\ 1/2 & 0 \end{pmatrix}$ is the generator of SO(2). We consider a functions $f \in \mathscr{C}^2(M)$ such that

$$\Box f = \mu f, \qquad Rf = 0,$$

for some $\mu > 0$.

• • = • • = • =

Our observables

- Rf = 0 means that f is SO(2)-invariant and hence is defined on M/SO(2) or, equivalently, defined on G/SO(2) and invariant by Γ .
- In Lecture 1, we saw that G/SO(2) can be identified with the hyperbolic plane *H*, so f is a function on *H* invariant by the action of Γ. That is, f is a function on the hyperbolic surface S = Γ*H*.
- For positive $\mu > 0$, saying that f satisfies $\Box f = \mu f$ and Rf = 0 is equivalent to asking that $\Delta_S f = \mu f$, i.e., f is an eigenfunction of the Laplacian on S.

・ 何 ト ・ ヨ ト ・ ヨ ト

The function K

We want to compute the self-correlations

$$K(t) := \langle f \circ h_t, f \rangle = \int_M f \circ h_t \cdot \overline{f} \, \mathrm{dvol} \, .$$

Note that, for any $j \ge 0$,

$$\mathcal{K}^{(j)}(t) = rac{\mathrm{d}^j}{\mathrm{d}t^j} \langle f \circ h_t, f
angle = \langle rac{\mathrm{d}^j}{\mathrm{d}t^j} f \circ h_t, f
angle = \langle U^j f \circ h_t, f
angle.$$

We also define

$$Q(t):=\langle Xf\circ h_t,f\rangle.$$

The function K

We have

$$0 = -\langle f \circ h_t, Rf \rangle = \langle R(f \circ h_t), f \rangle = \langle [Dh_t(R)f] \circ h_t, f \rangle.$$

From Lecture 1, we can compute

$$Dh_t(R) \simeq \operatorname{Ad}(\exp(t\mathbf{u}))\mathbf{r} = \mathbf{r} - t\mathbf{x} - \frac{t^2}{2}\mathbf{u}.$$

Therefore

$$0 = \langle Rf \circ h_t, f \rangle - t \langle Xf \circ h_t, f \rangle - \frac{t^2}{2} \langle Uf \circ h_t, f \rangle$$
$$= -tQ(t) - \frac{t^2}{2} K'(t).$$

< □ > < 同 > < 回 > < 回 > < 回 >

The function K

For all $t \ge 1$, we obtained

$$Q(t)=-\frac{t}{2}K'(t).$$

This implies that

$$Q'(t) = -rac{1}{2}K'(t) - rac{t}{2}K''(t).$$

Remark: since $K'(t) = \langle Uf \circ h_t, f \rangle$ and $Q'(t) = \langle UXf \circ h_t, f \rangle$, by the Cauchy-Schwarz Inequality,

$$egin{aligned} |\mathcal{K}'(t)| &\leq \|f\|_{\mathscr{C}^1}^2, & ext{and} \ |\mathcal{K}''(t)| &\leq rac{1}{t} (|\mathcal{K}'(t)| + 2|Q'(t)|) &\leq rac{3}{t} \|f\|_{\mathscr{C}^2}^2. \end{aligned}$$

• • = • • = •

The function Q(t)

We do the same for Q(t) instead of K(t) and we get

$$0 = -\langle Xf \circ h_t, Rf \rangle = \langle R(Xf \circ h_t), f \rangle = \langle [Dh_t(R)Xf] \circ h_t, f \rangle$$
$$= \langle RXf \circ h_t, f \rangle - t \langle X^2f \circ h_t, f \rangle - \frac{t^2}{2} \langle UXf \circ h_t, f \rangle.$$

Since, from Lecture 1, $\mathbf{r} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{r} = [\mathbf{r}, \mathbf{x}] = \frac{1}{2}\mathbf{y} = \frac{1}{2}(\mathbf{r} + \mathbf{u})$, we can write

$$0 = \langle XRf \circ h_t, f \rangle + \frac{1}{2} \langle Rf \circ h_t, f \rangle + \frac{1}{2} \langle Uf \circ h_t, f \rangle$$
$$- t \langle X^2 f \circ h_t, f \rangle - \frac{t^2}{2} \langle UXf \circ h_t, f \rangle$$
$$= \frac{1}{2} K'(t) - t \langle X^2 f \circ h_t, f \rangle - \frac{t^2}{2} Q'(t).$$

→ < ∃ →</p>

The equation to solve

We proved that

$$Q(t) = -\frac{t}{2}K'(t), \qquad Q'(t) = -\frac{1}{2}K'(t) - \frac{t}{2}K''(t),$$
$$\langle X^2 f \circ h_t, f \rangle = \frac{1}{2t}K'(t) - \frac{t}{2}Q'(t).$$

Since $\Box f = \mu f$ we also have

$$\mu K(t) = \langle \mu f \circ h_t, f \rangle = \langle \Box f \circ h_t, f \rangle$$
$$= \langle (-X^2 + X - U^2 - 2UR) f \circ h_t, f \rangle$$
$$= -\langle X^2 f \circ h_t, f \rangle + Q(t) - K''(t).$$

→ < Ξ →</p>

The equation to solve

Plugging everything together, we find

$$t^{2}K''(t) + 3tK'(t) + 4\mu K(t) = -4K''(t) - rac{2}{t}K'(t).$$

Recalling the bounds we had for |K'(t)| and for |K''(t)|, we proved the following result.

Theorem

Let $f \in \mathscr{C}^2(M)$ be such that Rf = 0 and $\Box f = \mu f$ for some $\mu > 0$. Then the self-correlations $K(t) = \langle f \circ h_t, f \rangle$ satisfy

$$t^2 \mathcal{K}''(t) + 3t \mathcal{K}'(t) + 4\mu \mathcal{K}(t) = \mathcal{P}(t),$$
 for all $t \ge 1$,

where P(t) is such that $|P(t)| \le 14 ||f||_{\mathscr{C}^2} t^{-1}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The solution

Assume $\mu \neq 1/4$. Then, the previous equation can be solved exactly: if we let $v \in \mathbb{R}_{>0} \cup i\mathbb{R}_{>0}$ be such that $v^2 = 1 - 4\mu$, we get

$$K(t) = \frac{t^{-1+\nu}}{2\nu} \int_{1}^{t} r^{-\nu} P(r) dr - \frac{t^{-1-\nu}}{2\nu} \int_{1}^{t} r^{\nu} P(r) dr + c_{1}t^{-1+\nu} + c_{2}t^{-1-\nu},$$

where the constants c_1, c_2 are determined by the initial conditions K(1) and K'(1).

Recalling $P(t) = O(t^{-1})$, we can rewrite

$$K(t) = \frac{t^{-1+\nu}}{2\nu} \left(\int_1^\infty r^{-\nu} P(r) dr + c_1 \right) + O(t^{-1}).$$

The solution

Theorem

Let $f \in \mathscr{C}^2(M)$ be such that Rf = 0 and $\Box f = \mu f$ for some $\mu > 0$, $\mu \neq 1/4$. Then, there exists a constant A = A(f) such that

$$|\langle f \circ h_t, f \rangle - At^{-1+\nu}| = O(t^{-1}).$$

In particular,

$$|\langle f \circ h_t, f \rangle| = O(t^{-1+\Re v}).$$

Exercise: generalise the theorem above to $\langle f \circ h_t, g \rangle$, where $f, g \in \mathscr{C}^2(M)$ are such that

$$\Box f = \mu f, \qquad Rf = i n f,$$

$$\Box g = \mu g, \qquad Rg = i m g,$$

for some $\mu \in \mathbb{R}$ and $n, m \in \mathbb{Z}$.

Ratner's Theorem

Theorem (Ratner 1987)

There exists $v_0 \in [0,1)$ such that the following holds. Let f,g be such that R^3f and R^3g exist and are continuous. Then, there exists a constant A = A(f,g) such that

$$\left|\int_{M} f \circ h_{t} \cdot g \, \mathrm{d} \operatorname{vol} - \left(\int_{M} f \, \mathrm{d} \operatorname{vol}\right) \left(\int_{M} g \, \mathrm{d} \operatorname{vol}\right)\right| \leq A t^{-1+\nu}$$

for all $t \geq 1$.

• • = • • =

Ratner's Theorem

The proof uses a spectral decomposition of $f \in L^2(M)$ into

$$f = \sum_{\mu \in \operatorname{Spec}(\Box)} \sum_{n \in I_{\mu}} f_{\mu,n},$$

where $I_{\mu} \subseteq \mathbb{Z}$ and $f_{\mu,n} \in \mathscr{C}^{\infty}(M)$ satisfies $\Box f_{\mu,n} = \mu f_{\mu,n}$ and $Rf_{\mu,n} = inf_{\mu,n}$. All these functions $f_{\mu,n}$ are mutually orthogonal.